Advertisement

Insect Pest Detection, Migration and Monitoring Using Radar and LiDAR Systems

  • Mahaveer Dwivedi
  • Malik Hashmat Shadab
  • V. R. Santosh
Chapter
  • 28 Downloads

Abstract

Radar and LiDAR entomology are emerging fields. Radars particularly polarimetric systems can be used effectively to detect and monitor insect pest population movements like migration. Radars can also be used to monitor high altitude migratory paths of insects. Doppler weather radars are able to detect and pinpoint area-wide population sources. They are also able to detect dense concentrations of airborne insects. Thus, radars and LiDARs contribute information on pest infestation density and population life stage. Integration of environmental condition to the above data will enable entomologist to predict the migration of insect pests. The portable harmonic radar system is a useful tool for effective detection of pest during both day and night. The harmonic radar system is also a useful tool to track the terrestrial insects. Even minute insects can be detected by a LiDAR system. Unlike radars, LiDARs can be used close to the ground for studying insects, including ecology and ethology.

Keywords

Radars LiDAR Pest monitoring Pest management 

Notes

Acknowledgement

The authors are thankful to the Director of IISC Bangalore, HOD Aerospace engineering and to the Department of Plant Protection and Biology. Swedish University, Sweden select photos and figures have been retrieved from the published papers, thankful to the authors and publishers.

References

  1. Brier HB, Rogers DJ (1991) Susceptibility of soybeans to damage by Nezara viridula (L.) (Hemiptera: Pentatomidae) and Riptortus serripes (F.) (Hemiptera: Alydidae) during three stages of pod development. Aust J Entomol 30(2):123–128CrossRefGoogle Scholar
  2. Chapman JW, Reynolds DR, Smith AD, Riley JR, Pedgley DE, Woiwod IP (2002a) High-altitude migration of the diamondback moth Plutella xylostella to the UK: a study using radar, aerial netting, and ground trapping. Ecol Entomol 27(6):641–650CrossRefGoogle Scholar
  3. Chapman JW, Smith AD, Woiwod AP, Reynolds DR, Riley JR (2002b) Developing-vertical-looking radar technology for monitoring insect migration. Comput Electron Agric 35:95–110CrossRefGoogle Scholar
  4. Chapman JW, Reynolds DR, Smith AD, Riley JR, Telfer MG, Woiwod IP (2005) Mass aerial migration in the carabid beetle Notiophilus biguttatus. Ecol Entomol 30(3):264–272CrossRefGoogle Scholar
  5. Chapman JW, Drake VA, Reynolds DR (2011) Recent insights from radar studies of insect flight. Annu Rev Entomol 56:337–356CrossRefGoogle Scholar
  6. Charles R, Vaughan H, Walemar K (1979) Radar, population ecology and pest management. In: Proceeding workshop, May, 2–4, vol 1978. Wallops Flight Centre, Wally’s Island, p 246Google Scholar
  7. Chilson PB, Frick WF, Kelly JF, Howard KW, Larkin RP, Diehl RH, Westrook JK, Kelly TA, Kunz TH (2012) Partly cloudy with a chance of migration: weather, radars, and aeroecology. Bull Am Meteorol Soc 93:669–686CrossRefGoogle Scholar
  8. Crawford A (1949) Radar reflections in the low atmosphere. Proc Inst Radio Eng 37:404–405Google Scholar
  9. Drake VA, Reynolds DR (2012) Radar entomology: observing insect flight and migration. CABI, Wallingford, p 489CrossRefGoogle Scholar
  10. Drake VA, Drake VA, Gatehouse AG (1995) Insect migration: tracing resources through space and time. Cambridge University Press, Cambridge, p 478CrossRefGoogle Scholar
  11. Gregorio E, Gené J, Sanz R, Rocadenbosch F, Chueca P, Arnó J, Rosell-Polo JR (2018) Polarization LiDAR detection of agricultural aerosol emissions. J Sens 2018:1864106CrossRefGoogle Scholar
  12. Hagler J, Mueller S, Teuber LR, Van Deynze A, Martin J (2011) A method for distinctly marking honey bees, Apis mellifera, originating from multiple apiary locations. J Insect Sci 11(1):143PubMedPubMedCentralGoogle Scholar
  13. Jackson PL, Straussfogel D, Lindgren BS, Mitchell S, Murphy B (2008) Radar observation and aerial capture of mountain pine beetle, Dendroctonus ponderosae Hopk.(Coleoptera: Scolytidae) in flight above the forest canopy. Can J For Res 38(8):2313–2327CrossRefGoogle Scholar
  14. Jansson S, Brydegaard M (2018) Passive kHz LiDAR for the quantification of insect activity and dispersal. Anim Biotelem 6(1):6CrossRefGoogle Scholar
  15. Kho J-W, Jung M, Lee D (2018) Evaluating the efficacy of two insect detection methods with Riptortus pedestris: portable harmonic radar system and fluorescent marking system. Pest Manage Sci 75:224–233.  https://doi.org/10.1002/p25106CrossRefGoogle Scholar
  16. Kim et al (2018) The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos Meas Tech 11:6107–6135CrossRefGoogle Scholar
  17. Lee DH, Wright SE, Boiteau G, Vincent C, Leskey TC (2013) Effectiveness of glues for harmonic radar tag attachment on Halyomorpha halys (Hemiptera: Pentatomidae) and their impact on adult survivorship and mobility. Environ Entomol 42(3):515–523CrossRefGoogle Scholar
  18. Leskinen M, Markkula I, Koistinen J, Pylkkö P, Ooperi S, Siljamo P et al (2011) Pest insect immigration warning by an atmospheric dispersion model, weather radars and traps. J Appl Entomol 135(1–2):55–67CrossRefGoogle Scholar
  19. Lim U (2013) Occurrence and control method of Riptortus pedestris (Hemiptera: Alydidae): Korean perspectives. Kor J Appl Entomol 52(4):437–448CrossRefGoogle Scholar
  20. Mascanzoni D, Wallin H (1986) The harmonic radar: a new method of tracing insects in the field. Ecol Entomol 11(4):387–390CrossRefGoogle Scholar
  21. Mei L, Guan ZG, Zhou HJ, Lv J, Zhu ZR, Cheng JA, Somesfalean G (2012) Agricultural pest monitoring using fluorescence LiDAR techniques. Appl Phys B 106(3):733–740CrossRefGoogle Scholar
  22. Milanesio D, Saccani M, Maggiora R, Laurino D, Porporato M (2016) Design of a harmonic radar for the tracking of the Asian yellow-legged hornet. Ecol Evol 6(7):2170–2178CrossRefGoogle Scholar
  23. Osborne JL, Clark SJ, Morris RJ, Williams IH, Riley JR, Smith AD et al (1999) A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J Appl Ecol 36(4):519–533CrossRefGoogle Scholar
  24. Ovaskainen O, Smith AD, Osborne JL, Reynolds DR, Carreck NL, Martin AP et al (2008) Tracking butterfly movements with harmonic radar reveals an effect of population age on movement distance. Proc Natl Acad Sci 105(49):19090–19095CrossRefGoogle Scholar
  25. Poffo DA, Beccaece HM, Caranti GM, Comer RA et al (2018) Migration monitoring of Ascia monuste (Lepidoptera) and Schistocerca cancellata in Argentina using RMAI weather radar. ISPRS J Photogramm Remote Sens.  https://doi.org/10.1016/j.isprsjprs.2018.05011
  26. Reynolds DR, Riley JR (1997) Flight behaviour and migration of insect pests. Radar studies in developing countries, vol 71. Natural Resources Institute (NRI), ChathamGoogle Scholar
  27. Riley JR, Greggers U, Smith AD, Reynolds DR, Menzel R (2005) The flight paths of honeybees recruited by the waggle dance. Nature 435(7039):205CrossRefGoogle Scholar
  28. Riley JR, Chapman JW, Reynolds DR, Smith AD (2007) Recent applications of radar to entomology. Outlooks Pest Manage 18(2):62CrossRefGoogle Scholar
  29. Smith AD, Riley JR, Gregory RD (1993) A method for routine monitoring of the aerial migration of insects using a vertical-looking radar. Philos Trans R Soc (Biol Sci) 340(1294):393–404.  https://doi.org/10.1098/rstb.1993.0081CrossRefGoogle Scholar
  30. Veneziano D, Hallmark S, Souleyrette R (2002) Accuracy evaluation of LIDAR – derived Terrain data for highway location. Computer – Aided Civil and Infrastructure EngineeringGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Mahaveer Dwivedi
    • 1
  • Malik Hashmat Shadab
    • 2
  • V. R. Santosh
    • 3
  1. 1.Computational Intelligence LaboratoryIndian Institute of ScienceBangaloreIndia
  2. 2.CINT LabIndian Institute of ScienceBangaloreIndia
  3. 3.Unit of Chemical Ecology, Department of Plant Protection and BiologySwedish University of Agricultural SciencesAlnarpSweden

Personalised recommendations