Nano-technology Applications in Pest Management

  • Atanu Bhattacharya
  • Timothy T. Epidi
  • M. Kannan


The application of nano-materials in crop protection remains unexplored. But, nano-pesticides have the potential to play a key role in the management of pests and pathogens. A nano-encapsulated pesticide formulation contains slow-releasing properties with increased stability, permeability, solubility and specificity. The development of eco-friendly nano-formulations with efficient delivery system and small quantities of nano-pesticides will be in great demand in the future. This will also facilitate production of massive quality products efficiently. Certain corporate sector companies are already marketing microencapsulated pesticides as nano-scale emulsions.


Nano-technology Nano-pesticides Nano-encapsulation Nano-emulsions 



Authors are thankful to the authorities of their institutions for encouragement and facilities.


  1. Ammar AS (2018) Nanotechnologies associated to floral resources in agri-food sector. Acta Agronóm 67(1):146–159CrossRefGoogle Scholar
  2. Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Rani PU, Desneux N (2018) Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91(1):1–15Google Scholar
  3. Balaji APB, Mishra P, Kumar RS, Ashu A, Margulis K, Magdassi S, Chandrasekaran N (2015) The environmentally benign form of pesticide in hydrodispersive nanometric form with improved efficacy against adult mosquitoes at low exposure concentrations. Bull Environ Contam Toxicol 95(6):734–739CrossRefPubMedPubMedCentralGoogle Scholar
  4. Balaji APB, Sastry TP, Manigandan S, Mukherjee A, Chandrasekaran N (2017) Environmental benignity of a pesticide in soft colloidal hydrodispersive nanometric form with improved toxic precision towards the target organisms than non-target organisms. Sci Total Environ 579:190–201CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bhattacharyya A, Prasad R, Buhroo AA, Duraisamy P, Yousuf I, Umadevi M et al (2016) One-pot fabrication and characterization of silver nanoparticles using Solanum lycopersicum: an eco-friendly and potent control tool against rose aphid, Macrosiphum rosae. J Nanosci 2016:4679410CrossRefGoogle Scholar
  6. Chandrashekharaiah M, Kandakoor SB, Gowda GB, Kammar V, Chakravarthy AK (2015) Nanomaterials: a review of their action and application in pest management and evaluation of DNA-tagged particles. In: New horizons in insect science: towards sustainable pest management. Springer, New Delhi, pp 113–126Google Scholar
  7. Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26(6):913–924CrossRefGoogle Scholar
  8. El-Argawy E, Rahhal MMH, El-Korany A, Elshabrawy EM, Eltahan RM (2017) Efficacy of some nanoparticles to control damping-off and root rot of sugar beet in El-Beheira Governorate. Asian J Plant Pathol 11:35–47CrossRefGoogle Scholar
  9. Elek N, Hoffman R, Raviv U, Resh R, Ishaaya I, Magdassi S (2010) Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Colloids Surf A Physicochem Eng Asp 372(1–3):66–72CrossRefGoogle Scholar
  10. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792CrossRefGoogle Scholar
  11. Grillo R, Abhilash PC, Fraceto LF (2016) Nanotechnology applied to bio-encapsulation of pesticides. J Nanosci Nanotechnol 16(1):1231–1234CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gutiérrez JM, González C, Maestro A, Solè IMPC, Pey CM, Nolla J (2008) Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13(4):245–251CrossRefGoogle Scholar
  13. Huang B, Chen F, Shen Y, Qian K, Wang Y, Sun C, Cui H (2018) Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials 8(2):102CrossRefGoogle Scholar
  14. Kharissova OV, Kharisov BI, García TH, Méndez UO (2009) A review on less-common nanostructures. Synth React Inorg Met-Org Nano-Met Chem 39(10):662–684CrossRefGoogle Scholar
  15. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lade BD, Gogle DP, Lade DB, Moon GM, Nandeshwar SB, Kumbhare SD (2019) Nanobiopesticide formulations: application strategies today and future perspectives. In: Nano-biopesticides today and future perspectives. Academic, pp 179–206Google Scholar
  17. Lai F, Wissing SA, Müller RH, Fadda AM (2006) Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS PharmSciTech 7(1):E10CrossRefPubMedPubMedCentralGoogle Scholar
  18. Logaranjan K, Raiza AJ, Gopinath SC, Chen Y, Pandian K (2016) Shape-and size-controlled synthesis of silver nanoparticles using Aloe vera plant extract and their antimicrobial activity. Nanoscale Res Lett 11(1):520CrossRefPubMedPubMedCentralGoogle Scholar
  19. Margulis-Goshen K, Magdassi S (2012) Organic nanoparticles from microemulsions: formation and applications. Curr Opin Colloid Interface Sci 17(5):290–296CrossRefGoogle Scholar
  20. Misra P, Shukla PK, Pramanik K, Gautam S, Kole C (2016) Nanotechnology for crop improvement. In: Plant nanotechnology. Springer, Cham, pp 219–256CrossRefGoogle Scholar
  21. Muller RH, Keck CM (2004) Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 113(1–3):151–170CrossRefPubMedPubMedCentralGoogle Scholar
  22. Murugan K, Panneerselvam C, Samidoss CM, Madhiyazhagan P, Suresh U, Roni M, Paulpandi M (2016) In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Res Vet Sci 106:14–22CrossRefPubMedPubMedCentralGoogle Scholar
  23. Nadia ZD, Hany MH (2016) Role of nanotechnology in agriculture with special reference to pest control. Int J PharmTechnol Res 9(10):121–144Google Scholar
  24. Narayanan N, Gupta S, Gajbhiye VT, Manjaiah KM (2017) Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis. Chemosphere 173:502–511CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64(7):1447–1483CrossRefPubMedPubMedCentralGoogle Scholar
  26. Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10(2):124–127CrossRefGoogle Scholar
  27. Ponmurugan P, Manjukarunambika K, Elango V, Gnanamangai BM (2016) Antifungal activity of biosynthesised copper nanoparticles evaluated against red root-rot disease in tea plants. J Exp Nanosci 11(13):1019–1031CrossRefGoogle Scholar
  28. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293CrossRefGoogle Scholar
  30. Rai M, Ingle AP, Paralikar P, Anasane N, Gade R, Ingle P (2018) Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology. Appl Microbiol Biotechnol 102(16):6827–6839CrossRefPubMedPubMedCentralGoogle Scholar
  31. Raliya R, Tarafdar JC (2012) Novel approach for silver nanoparticle synthesis using Aspergillus terreus CZR-1: mechanism perspective. J Bionanosci 6(1):12–16CrossRefGoogle Scholar
  32. Rani S, Sushil (2018) Pest management by nanotechnology. Int J Curr Microbiol Appl Sci 7(3):3197–3208CrossRefGoogle Scholar
  33. Rodriguez E, Azevedo R, Fernandes P, Santos CA (2011) Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum. Chem Res Toxicol 24(7):1040–1047CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Insecticides design using advanced technologies. Springer, Berlin, pp 1–39Google Scholar
  35. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31CrossRefPubMedPubMedCentralGoogle Scholar
  36. Singh P, Kumari K, Vishvakarma VK, Aggarwal S, Chandra R, Yadav A (2018) Nanotechnology and its impact on insects in agriculture. In: Trends in insect molecular biology and biotechnology. Springer, Cham, pp 353–378CrossRefGoogle Scholar
  37. Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66(6):577–579PubMedPubMedCentralGoogle Scholar
  38. Stadler T, Buteler M, Weaver DK, Sofie S (2012) Comparative toxicity of nanostructured alumina and a commercial inert dust for Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at varying ambient humidity levels. J Stored Prod Res 48:81–90CrossRefGoogle Scholar
  39. Strom R, Price D, Lubetkin S (2001) U.S. Patent Application No. 09/865,360Google Scholar
  40. Tarafdar JC, Raliya R (2012) Nanotechnology. Scientific Publishers, JodhpurGoogle Scholar
  41. Tarafdar JC, Rathore I (2016) Microbial synthesis of nanoparticles for use in agriculture ecosystem. In: Bagyaraj DJ, Jamaluddin (eds) Microbes for plant stress management. New India Publishing Agency, Delhi, pp 105–118Google Scholar
  42. Thakur S, Thakur S, Kumar R (2018) Bio-nanotechnology and its role in agriculture and food industry. J Mol Genet Med 12(324):1747–0862Google Scholar
  43. Velayutham K, Rahuman AA, Rajakumar G, Roopan SM, Elango G, Kamaraj C et al (2013) Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac J Trop Med 6(2):95–101CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yasur J, Rani PU (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102CrossRefGoogle Scholar
  46. Zheng Y, Fahrenholtz CD, Hackett CL, Ding S, Day CS, Dhall R, Bierbach U (2017) Large-pore functionalized mesoporous silica nanoparticles as drug delivery vector for a highly cytotoxic hybrid platinum–acridine anticancer agent. Chem Eur J 23(14):3386–3397CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Atanu Bhattacharya
    • 1
  • Timothy T. Epidi
    • 2
  • M. Kannan
    • 3
  1. 1.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Crop Production TechnologyNiger Delta University, Wilberforce IslandYenagoaNigeria
  3. 3.Division of Agricultural EntomologyTamil Nadu Agricultural UniversityCoimbatoreIndia

Personalised recommendations