Functional Diversity of Infochemicals in Agri-Ecological Networks

  • Pagadala Damodaram Kamala Jayanthi
  • Thimmappa Raghava
  • Vivek Kempraj


The trophic info networks are ecological networks through which information flows from one trophic level to the other. They are like food webs, but the difference is that information is transferred, instead of energy. The dynamics of information exchange occur between organisms across trophic levels through infochemicals which transfer information within and among species in the form of chemical signals and is perhaps the most prevalent mode of communication in nature. These trophic infonetworks embrace diverse biochemical compounds bridging the interactive networks by which plants, herbivores, and carnivores interact and communicate. The knowledge about the perception and synthesis of natural infochemicals play an important role in understanding the functioning of agro-ecosystems. Organisms in infonetworks have co-evolved over generations as all members of a particular network depend on one another for survival. In this chapter, the trophic interactions and the diversity of infochemicals involved in agri-ecological networks and their role in developing ecologically, environmentally friendly pest management strategies are discussed.


Infochemicals Trophic interactions Agro-ecosystem Semiochemicals Pest management 



Authors KJPD, RT, and VK express their sincere thanks to the Director, IIHR, for providing research facilities and financial support through NICRA is gratefully acknowledged.


  1. Aijaz AS, Iram K, Jamal MA, Ishtiyaq A, Fayaz AT, Sajad UN (2017) Role of infochemicals to enhance the efficacy of biocontrol agents in pest management. Int J Chem Stud 5(3):655–662Google Scholar
  2. Ammagarahalli B, Chianella L, Gomes P, Gemeno C (2018) Role of plant volatiles and hetero-specific pheromone components in the wind tunnel response of male Grapholita molesta (Lepidoptera: Tortricidae) to modified sex pheromone blends. Bull Entomol Res 107:573–582CrossRefGoogle Scholar
  3. Andrews ES, Theis N, Adler LS (2007) Pollinator and herbivore attraction to cucurbita floral volatiles. J Chem Ecol 33:1682–1691CrossRefPubMedPubMedCentralGoogle Scholar
  4. Appel HM, Cocroft RB (2014) Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia 175:1257–1266CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arn H, Tóth M, Priesner E (1992) List of sex pheromones of Lepidoptera and related attractants (Organisation internationale de lutte biologique Section régionale ouest paléarctique (OILB-SROP), 2nd edn. Mont favet, p 179. ISBN 92–9067–044-4Google Scholar
  7. Atsumi A, Saito T (2015) Volatiles from wasabi inhibit entomopathogenic fungi: implications for tritrophic interactions and biological control. J Plant Interact 10:152–157CrossRefGoogle Scholar
  8. Azeem M (2013) Microbes associated with Hylobius abietis: a chemical and behavioral study. Doctoral thesis submitted to KTH Chemical Science and Engineering, Royal Institute of Technology, Stockholm, p 66Google Scholar
  9. Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth. Plant Signal Behav 7:79–85CrossRefPubMedPubMedCentralGoogle Scholar
  10. Baker T (2008) Balanced olfactory antagonism as a concept for understanding evolutionary shifts in moth sex pheromone blends. J Chem Ecol 34:971–981CrossRefGoogle Scholar
  11. Baldwin IT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221:277–279CrossRefGoogle Scholar
  12. Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311:812–815CrossRefGoogle Scholar
  13. Barah P, Bones AM (2015) Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology. J Exp Bot 66:479–493CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bethe A (1932) Vernachlässigte Hormone. Naturwissenschaften 20:177–181CrossRefGoogle Scholar
  15. Beyaert I, Hilker M (2014) Plant odour plumes as mediators of plant-insect interactions. Biol Rev Camb Philos Soc 89:68–81CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bhatia V, Maisnam J, Jain A, Sharma KK, Bhattacharya R (2015) Aphid-repellent pheromone E-β-farnesene is generated in transgenic Arabidopsis thaliana over-expressing farnesyl diphosphate synthase2. Ann Bot 115:581–591CrossRefPubMedPubMedCentralGoogle Scholar
  17. Blande JD, Pickett JA, Poppy GM (2007) A comparison of semiochemically mediated interactions involving specialist and generalist brassica-feeding aphids and the braconid parasitoid Diaeretiella rapae. J Chem Ecol 33:767–779CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M, Schutz S, de Both MTJ, Haring MA, Schuurink RC (2009) The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol 151:925–935CrossRefPubMedPubMedCentralGoogle Scholar
  19. Blomquist GJ, Figueroa-Teran R, Aw M, Song M, Gorzalski A, Abbott NL, Chang E, Tittiger C (2010) Pheromone production in bark beetles. Insect Biochem Insect Mol Biol 40:699–712CrossRefGoogle Scholar
  20. Boullis A, Francis F, Verheggen FJ (2015) Climate change and tritrophic interactions: will modifications to greenhouse gas emissions increase the vulnerability of herbivorous insects to natural enemies? Environ Entomol 44:277–286CrossRefGoogle Scholar
  21. Bredeson MM, Reese RN, Lundgren JG (2015) The effects of insecticide dose and herbivore density on tri-trophic effects of thiamethoxam in a system involving wheat, aphids, and lady beetles. Crop Protect 69:70–76CrossRefGoogle Scholar
  22. Brown WL (1968) An hypothesis concerning the function of the metapleural glands in ants. Am Nat 102:188–191CrossRefGoogle Scholar
  23. Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects–finding the right mix. Phytochemistry 72:1605–1611CrossRefGoogle Scholar
  24. Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274CrossRefGoogle Scholar
  25. de Bruyne M, Baker TC (2008) Odor detection in insects: volatile codes. J Chem Ecol 34:882–897CrossRefGoogle Scholar
  26. Chen YH, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:35–58CrossRefGoogle Scholar
  27. Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF, Hoover K, Luthe DS, Felton GW (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci U S A 110:15728–15733CrossRefPubMedPubMedCentralGoogle Scholar
  28. Cusumano A, Weldegergis BT, Colazza S, Dicke M, Fatouros NE (2015) Attraction of egg-killing parasitoids toward induced plant volatiles in a multi-herbivore context. Oecologia 179: 163–174Google Scholar
  29. D’Alessandro M, Turlings TCJ (2006) Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 131:24–32CrossRefGoogle Scholar
  30. D’Alessandro M, Erb M, Ton J, Brandenburg A, Karlen D, Zopfi J, Turlings TCJ (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ 37:813–826CrossRefGoogle Scholar
  31. van Dam NM (2009) How plants cope with biotic interactions. Plant Biol (Stuttg) 11:1–5Google Scholar
  32. Davis TS, Hofstetter RW, Foster JT, Foote NE, Keim P (2011) Interactions between the yeast Ogataea pini and filamentous fungi associated with the western pine beetle. Microb Ecol 61:626–634CrossRefGoogle Scholar
  33. Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39:840–859CrossRefGoogle Scholar
  34. Desurmont GA, Laplanche D, Schiestl FP, Turlings TC (2015) Floral volatiles interfere with plant attraction of parasitoids: ontogeny-dependent infochemical dynamics in Brassica rapa. BMC Ecol 15:17CrossRefPubMedPubMedCentralGoogle Scholar
  35. Desurmont GA, Antonie G, Ted CJT (2018) Invasive insect herbivores as disrupters of chemically-mediated tritrophic interactions: effects of herbivore density and parasitoid learning. Biol Invasions 20(1):195–206CrossRefGoogle Scholar
  36. Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help”. Trends Plant Sci 15:167–175CrossRefGoogle Scholar
  37. Dicke M, Bruin J (2001) Chemical information transfer between plants: back to the future. Biochem Syst Ecol 29:981–994CrossRefGoogle Scholar
  38. Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Funct Ecol 2:131–139CrossRefGoogle Scholar
  39. Dorn S, Natale D, Mattiacci L, Hern A, Pasqualini E, Dorn S (2003) Response of female Cydia molesta (Lepidoptera: Tortricidae) to plant derived volatiles. Bull Entomol Res 93:335–342CrossRefGoogle Scholar
  40. Dowd PF, Michael Smith C, Sparks TC (1983) Detoxification of plant toxins by insects. Insect Biochem 13:453–468CrossRefGoogle Scholar
  41. Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902CrossRefPubMedPubMedCentralGoogle Scholar
  42. El-Sayed AM (2014) The pherobase: database of insect pheromones and semiochemicals.
  43. Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci U S A 101:1781–1785CrossRefPubMedPubMedCentralGoogle Scholar
  44. Evans LT (1993) Crop evolution, adaptation and yield. Cambridge University Press, CambridgeGoogle Scholar
  45. Farag MA, Fokar M, Abd H, Zhang H, Allen RD, Paré PW (2005) (Z)-3-Hexenol induces defense genes and downstream metabolites in maize. Planta 220:900–909CrossRefGoogle Scholar
  46. Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008) Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol 146:818–824CrossRefPubMedPubMedCentralGoogle Scholar
  47. García D, Zamora R, Gómez JM, Jordano P, Hódar JA (2000) Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range. Eur J Ecol 88:435–446CrossRefGoogle Scholar
  48. Gols R, Harvey JA (2008) Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids. Phytochem Rev 8:187–206CrossRefGoogle Scholar
  49. Gols R, Bullock JM, Dicke M, Bukovinszky T, Harvey JA (2011) Smelling the wood from the trees: non-linear parasitoid responses to volatile attractants produced by wild and cultivated cabbage. J Chem Ecol 37:795–807CrossRefPubMedPubMedCentralGoogle Scholar
  50. Gouinguené S, Degen T, Turlings TC (2001) Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology 11:9–16CrossRefGoogle Scholar
  51. Groot AT, Dicke M (2002) Insect-resistant transgenic plants in a multi-trophic context. Plant J 31:387–406CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gross J (2017) Applications of chemical ecology in agriculture: development of innovative info chemical-based monitoring tools and strategies. In Conference: Écologie Chimique: nouvelles contributions à la protection des cultures contre les ravageurs et 11. Association Française de Protection des Plantes (AFPP), pp 28–37Google Scholar
  53. Heil M, Bueno JCS (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci 104:5467–5472CrossRefPubMedPubMedCentralGoogle Scholar
  54. Henning JA, Peng YS, Montague MA, Teuber LR (1992) Honey bee (Hymenoptera: Apidae) behavioral response to primary alfalfa (Rosales: Fabaceae) floral volatiles. J Econ Entomol 85:233–239CrossRefGoogle Scholar
  55. Hering PEM (1951) Damage caused by miners, and their practical value. Geographical distribution. In: Biology of the leaf miners. Springer, Netherlands, pp 294–300CrossRefGoogle Scholar
  56. Hunt DWA, Borden JH (1990) Conversion of verbenols to verbenone by yeasts isolated from Dendroctonus ponderosae (Coleoptera: Scolytidae). J Chem Ecol 16:1385–1397CrossRefGoogle Scholar
  57. Ivie GW, Bull DL, Beier RC, Pryor NW, Oertli EH (1983) Metabolic detoxification: mechanism of insect resistance to plant psoralens. Science 221:374–376CrossRefGoogle Scholar
  58. Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012CrossRefGoogle Scholar
  59. Kamala Jayanthi PD, Woodcock CM, Caulfield J, Birkett MA, Bruce TJ (2012) Isolation and identification of host cues from mango, Mangifera indica, that attract gravid female oriental fruit fly, Bactrocera dorsalis. J Chem Ecol 38:361–369CrossRefGoogle Scholar
  60. Kamala Jayanthi PD, Kempraj V, Aurade RM, Venkataramanappa RK, Nandagopal B, Verghese A, Bruce TJ (2014a) Specific volatile compounds from mango elicit oviposition in gravid Bactrocera dorsalis females. J Chem Ecol 40:259–266CrossRefGoogle Scholar
  61. Kamala Jayanthi PD, Kempraj V, Aurade RM, Venkataramanappa RK, Nandagopal B, Verghese A, Bruce T (2014b) Oviposition site-selection by Bactrocera dorsalis is mediated through an innate recognition template tuned to γ-octalactone. PLoS One 10(9):e0139124Google Scholar
  62. Kamala Jayanthi PD, Aurade RM, Kempraj V, Chakravarthy AK, Verghese A (2015) Glimpses of semiochemical research applications in Indian horticulture: present status and future perspectives. In: Chakravarthy AK (ed) New horizons in insect science: towards sustainable pest management. Springer, New Delhi, pp 239–257Google Scholar
  63. Kamala Jayanthi PD, Arthikirubha A, Kempraj V (2016) Commensal bacteria aid mate-selection in the fruit Fly, Bactrocera dorsalis. Microb Ecol 72(3):725–729CrossRefGoogle Scholar
  64. Karban R, Shiojiri K, Huntzinger M, McCall AC (2006) Damage-induced resistance in sagebrush: volatiles are key to intra- and interplant communication. Ecology 87:922–930CrossRefPubMedPubMedCentralGoogle Scholar
  65. Karlson P, Butenandt A (1959) Pheromones (Ectohormones) in insects. Annu Rev Entomol 4:39–58CrossRefGoogle Scholar
  66. Kaur T, Singh B, Kaur A, Kaur S (2015) Endophyte-mediated interactions between cauliflower, the herbivore Spodoptera litura, and the ectoparasitoid Bracon hebetor. Oecologia 179:487–494CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kennedy GG (2003) Tomato, pests, parasitoids, and predators: Tritrophic interactions involving the genus Lycopersicon. Annu Rev Entomol 48:51–72CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kim J, Tooker JF, Luthe DS, De Moraes CM, Felton GW (2012) Insect eggs can enhance wound response in plants: A study system of tomato Solanum lycopersicum L. and Helicoverpa zea Boddie. PLoS One 7:e37420CrossRefPubMedPubMedCentralGoogle Scholar
  70. Kollberg I, Bylund H, Jonsson T, Schmidt A, Gershenzon J, Björkman C (2015) Temperature affects insect outbreak risk through tritrophic interactions mediated by plant secondary compounds. Ecosphere 6:art102CrossRefGoogle Scholar
  71. Köllner TG, Held M, Lenk C, Hiltpold I, Turlings TCJ, Gershenzon J, Degenhardt J (2008) A maize (E)-β-Caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:482–494CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kushad MM, Cloyd R, Babadoost M (2004) Distribution of glucosinolates in ornamental cabbage and kale cultivars. Sci Hortic 101:215–221CrossRefGoogle Scholar
  73. Landolt PJ, Phillips TW (1997) Host plant influences on sex pheromone behavior of phytophagous insects. Annu Rev Entomol 42:371–391CrossRefPubMedPubMedCentralGoogle Scholar
  74. Leroy PD, Sabri A, Verheggen FJ, Francis F, Thonart P, Haubruge E (2011) The semiochemical mediated interactions between bacteria and insects. Chemoecology 21:113–122CrossRefGoogle Scholar
  75. Loucks OL (1977) Emergence of research on agro-ecosystems. Annu Rev Ecol Syst 8:173–192CrossRefGoogle Scholar
  76. Mann RS, Ali JG, Hermann SL, Tiwari S, Pelz-Stelinski KS, Alborn HT, Stelinski LL (2012) Induced release of a plant-defense volatile “deceptively” attracts insect vectors to plants infected with a bacterial pathogen. PLoS Pathog 8:e1002610CrossRefPubMedPubMedCentralGoogle Scholar
  77. Markovic I, Norris DM, Phillips JK, Webster FX (1996) Volatiles involved in the non-host rejection of Fraxinus pennsylvanica by Lymantria dispar larvae. J Agric Food Chem 44:929–935CrossRefGoogle Scholar
  78. Martini X, Hughes MA, Smith JA, Stelinski LL (2015) Attraction of redbay ambrosia beetle, Xyleborus glabratus, to leaf volatiles of its host plants in North America. J Chem Ecol 41:613–621CrossRefPubMedPubMedCentralGoogle Scholar
  79. McAuslane HJ, Alborn HT, Toth JP (1997) Systemic induction of terpenoid aldehydes in cotton pigment glands by feeding of larval Spodoptera exigua. J Chem Ecol 23:2861–2879CrossRefGoogle Scholar
  80. Mello MO, Silva-Filho MC (2002) Plant-insect interactions: an evolutionary arms race between two distinct defense mechanisms. Braz J Plant Physiol 14:71–81CrossRefGoogle Scholar
  81. Mendesil E, Bruce TJ, Woodcock CM, Caulfield JC, Seyoum E, Pickett JA (2009) Semiochemicals used in host location by the coffee berry borer, Hypothenemus hampei. J Chem Ecol 35:944–950CrossRefPubMedPubMedCentralGoogle Scholar
  82. Meyer RS, DuVal AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of global food crops. New Phytol 196:29–48CrossRefPubMedPubMedCentralGoogle Scholar
  83. Moles AT, Bonser SP, Poore AG, Wallis IR, Foley WJ (2011) Assessing the evidence for latitudinal gradients in plant defence and herbivory. Funct Ecol 25:380–388CrossRefGoogle Scholar
  84. Moreira X, Abdala-Roberts L, Parra-Tabla V, Mooney KA (2015) Latitudinal variation in herbivory: influences of climatic drivers, herbivore identity and natural enemies. Oikos 124:1444–1452CrossRefGoogle Scholar
  85. Moyes CL, Raybould AF (2001) The role of spatial scale and intraspecific variation in secondary chemistry in host–plant location by Ceutorhynchus assimilis (Coleoptera: Curculionidae). Proc R Soc Lond Ser B Biol Sci 268:1567–1573CrossRefGoogle Scholar
  86. Müller C, Riederer M (2005) Plant surface properties in chemical ecology. J Chem Ecol 31:2621–2651CrossRefPubMedPubMedCentralGoogle Scholar
  87. Munir S, Dosdall LM, O’Donovan JT, Keddie A (2015) Diadegma insulare development is altered by Plutella xylostella reared on water-stressed host plants. J Appl Entomol 140:364–375CrossRefGoogle Scholar
  88. Obrycki JJ, Losey JE, Taylor OR, Jesse LC (2001) Transgenic insecticidal corn: beyond insecticidal toxicity to ecological complexity analysis of transgenic insecticidal corn developed for lepidopteran pests reveals that the potential benefits of crop genetic engineering for insect pest management may not outweigh the potential ecological and economic risks. Bioscience 51:353–361CrossRefGoogle Scholar
  89. Pan X, Welti R, Wang X (2010) Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry. Nat Protoc 5:986–992CrossRefPubMedPubMedCentralGoogle Scholar
  90. Paschold A, Halitschke R, Baldwin IT (2006) Using “mute” plants to translate volatile signals. Plant J Cell Mol Biol 45:275–291CrossRefGoogle Scholar
  91. Paul AVN, Srivastava M, Dureja P, Singh AK (2008) Semiochemicals produced by tomato varieties and their role in parasitism of Corcyra cephalonica (Lepidoptera: Pyralidae) by the egg parasitoid Trichogramma chilonis (Hymenoptera: Trichogrammatidae). Int J Trop Insect Sci 28:108–116CrossRefGoogle Scholar
  92. Pearse IS, Hipp AL (2012) Global patterns of leaf defenses in oak species. Evolution 66:2272–2286CrossRefGoogle Scholar
  93. Peñuelas J, Llusià J (2004) Plant VOC emissions: making use of the unavoidable. Trends Ecol Evol 19:402–404CrossRefGoogle Scholar
  94. Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243CrossRefGoogle Scholar
  95. Poelman EH (2015) From induced resistance to defence in plant-insect interactions. Entomol Exp Appl 157:11–17CrossRefGoogle Scholar
  96. Poppy GM, Sutherland JP (2004) Can biological control benefit from genetically-modified crops? Tritrophic interactions on insect-resistant transgenic plants. Physiol Entomol 29:257–268CrossRefGoogle Scholar
  97. Potting RPJ, Perry JN, Powell W (2005) Insect behavioural ecology and other factors affecting the control efficacy of agro-ecosystem diversification strategies. Ecol Model 182:199–216CrossRefGoogle Scholar
  98. Prasanna Kumar NR, Kamala Jayanthi PD, Kempraj V, Ravindra MA, Roy TK, Verghese A (2017) Herbivore induced plant volatiles represents a favorable host to onion thrips (Thrips tabaci). Indian J Agric Sci 87:373–378Google Scholar
  99. Rasmann S, Agrawal AA (2011) Latitudinal patterns in plant defense: evolution of cardenolides, their toxicity and induction following herbivory. Ecol Lett 14:476–483CrossRefGoogle Scholar
  100. Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737CrossRefGoogle Scholar
  101. Regnier FE (1971) Semiochemicals—structure and function. Biol Reprod 4:309–326CrossRefGoogle Scholar
  102. Regnier FE, Law JH (1968) Insect pheromones. J Lipid Res 9:541–551PubMedGoogle Scholar
  103. Renwick JAA, Haribal M, Gouinguené S, Städler E (2006) Isothiocyanates stimulating oviposition by the diamondback moth, Plutella xylostella. J Chem Ecol 32:755–766CrossRefGoogle Scholar
  104. Robacker DC, Flath RA (1995) Attractants from Staphylococcus aureus cultures for Mexican fruit fly,Anastrepha ludens. J Chem Ecol 21:1861–1874CrossRefGoogle Scholar
  105. Romo CM, Tylianakis JM (2013) Elevated temperature and drought interact to reduce parasitoid effectiveness in suppressing hosts. PLoS One 8:e58136CrossRefPubMedPubMedCentralGoogle Scholar
  106. Ruther J, Kleier S (2005) Plant-plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol. J Chem Ecol 31:2217–2222CrossRefGoogle Scholar
  107. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026CrossRefPubMedPubMedCentralGoogle Scholar
  108. de Sassi C, Lewis OT, Tylianakis JM (2012) Plant-mediated and nonadditive effects of two global change drivers on an insect herbivore community. Ecology 93:1892–1901CrossRefGoogle Scholar
  109. Schoonhoven LM, Van Loon JJ, Dicke M (2005) Insect-plant biology. Oxford University Press, Oxford, p 448Google Scholar
  110. Scriber JM et al (2015) Invasive species, disrupted chemical community dynamics and future adaptations: commentary on Chaabane. J Ecol 103:118–120CrossRefGoogle Scholar
  111. Sheehan W (1986) Response by specialist and generalist natural enemies to agroecosystem diversification: a selective review. Environ Entomol 15:456–461CrossRefGoogle Scholar
  112. Shivaramu S, Kamala Jayanthi PD, Kempraj V, Raghavendra A, Bakthavathsalam N, Chakravarty AK (2017) What signals do herbivore-induced plant volatiles provide conspecific herbivores? Arthropod Plant Interact.
  113. Snyder J, Guo Z, Thacker R, Goodman J, Stpyrek J (1993) 2,3-Dihydro Farnesoic acid, a unique terpene from trichomes of Lycopersicon hirsutum, repels spider-mites. J Chem Ecol 19:2981–2997CrossRefPubMedPubMedCentralGoogle Scholar
  114. Sugimoto K, Matsui K, Iijima Y, Akakabe Y, Muramoto S, Ozawa R, Uefune M, Sasaki R, Alamgir KM, Akitake S et al (2014) Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc Natl Acad Sci 111:7144–7149CrossRefPubMedPubMedCentralGoogle Scholar
  115. Takabayashi J (2014) Infochemical webs and tritrophic interactions. eLS, Wiley, ChichesterCrossRefGoogle Scholar
  116. Tamiru A, Bruce TJ, Woodcock CM, Birkett MA, Midega CA, Pickett JA, Khan ZR (2015) Chemical cues modulating electrophysiological and behavioural responses in the parasitic wasp Cotesia sesamiae. Can J Zool 93:281–287CrossRefGoogle Scholar
  117. Tasin M, Betta E, Carlin S, Gasperi F, Mattivi F, Pertot I (2011) Volatiles that encode host-plant quality in the grapevine moth. Phytochemistry 72:1999–2005CrossRefPubMedPubMedCentralGoogle Scholar
  118. Ton J, D’Alessandro M, Jourdie V, Jakab G, Karlen D, Held M, Mauch-Mani B, Turlings TCJ (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J Cell Mol Biol 49:16–26CrossRefGoogle Scholar
  119. Traill LW, Brook BW, Frankham RR, Bradshaw CJ (2010) Pragmatic population viability targets in a rapidly changing world. Biol Conserv 143:28–34CrossRefGoogle Scholar
  120. Tscharntke T, Thiessen S, Dolch R, Boland W (2001) Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochem Syst Ecol 29:1025–1047CrossRefGoogle Scholar
  121. Turlings TC, Fritzsche ME (1999) Attraction of parasitic wasps by caterpillar-damaged plants. Novartis Found Symp 223:21–32, discussion 32–38PubMedPubMedCentralGoogle Scholar
  122. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363CrossRefPubMedPubMedCentralGoogle Scholar
  123. Van Oosten VR, Bodenhausen N, Reymond P, Van Pelt JA, Van Loon LC, Dicke M, Pieterse CMJ (2008) Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Mol Plant Microbe Interact 21:919–930CrossRefPubMedPubMedCentralGoogle Scholar
  124. Vet LE, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172CrossRefGoogle Scholar
  125. Visser JH (1986) Host odor perception in phytophagous insects. Annu Rev Entomol 31:121–144CrossRefGoogle Scholar
  126. Voerman S (1988) The pheromone bank: a collection of unsaturated compounds indispensible for discovery of sex attractants for Lepidoptera. Agric Ecosyst Environ 21:31–41CrossRefGoogle Scholar
  127. Wei G, Thomas S, Cole M, Racz Z, Gardner JW (2017) Ratiometric decoding of pheromones for a biomimetic infochemical communication system. Sensors 17(11):2489CrossRefGoogle Scholar
  128. Whittaker RH (1970) The biochemical ecology of higher plants. In: Sondheimer E (ed) Chemical ecology. Academic Press, New York, pp 43–70CrossRefGoogle Scholar
  129. Winston ML (1991) The Biology of the Honey Bee. Harvard University Press, Cambridge, MA, p 281Google Scholar
  130. Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100CrossRefPubMedPubMedCentralGoogle Scholar
  131. Witzgall P, Proffit M, Rozpedowska E, Becher PG, Andreadis S, Coracini M, Lindblom TUT, Ream LJ, Hagman A, Bengtsson M et al (2012) “This is not an apple”–yeast mutualism in codling moth. J Chem Ecol 38:949–957CrossRefPubMedPubMedCentralGoogle Scholar
  132. Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc B Biol Sci 365:2093–2106CrossRefGoogle Scholar
  133. Yamazaki K (2010) Leaf mines as visual defensive signals to herbivores. Oikos 119:796–801CrossRefGoogle Scholar
  134. Yanagawa A, Fujiwara-Tsujii N, Akino T, Yoshimura T, Yanagawa T, Shimizu S (2012) Odor aversion and pathogen-removal efficiency in grooming behavior of the termite Coptotermes formosanus. PLoS One 7(10):e47412CrossRefPubMedPubMedCentralGoogle Scholar
  135. Yokota K (2007) Kairomone-induced colony formation in freshwater phytoplankton: algal population dynamics and physiological cost of coloniality. Ph.D., University of MinnesotaGoogle Scholar
  136. Yolanda HC, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60(1):35–58CrossRefGoogle Scholar
  137. Zakir A, Sadek MM, Bengtsson M, Hansson BS, Witzgall P, Anderson P (2013) Herbivore-induced plant volatiles provide associational resistance against an ovipositing herbivore. J Ecol 101:410–417CrossRefGoogle Scholar
  138. Zhang S, Wei J, Guo X, Liu T-X, Kang L (2010) Functional synchronization of biological rhythms in a tritrophic system. PLoS One 5:e11064CrossRefPubMedPubMedCentralGoogle Scholar
  139. Zhao YX, Kang L (2002) Role of plant volatiles in host plant location of the leafminer, Liriomyza sativae (Diptera: Agromyzidae). Physiol Entomol 27:103–111CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Pagadala Damodaram Kamala Jayanthi
    • 1
  • Thimmappa Raghava
    • 1
  • Vivek Kempraj
    • 2
  1. 1.Division of Entomology and NematologyICAR-Indian Institute of Horticultural ResearchBangaloreIndia
  2. 2.Department of Biological SciencesMacquarie UniversitySydneyAustralia

Personalised recommendations