Advertisement

A Novel Lattice-Based Ciphertext-Policy Attribute-Based Proxy Re-encryption for Cloud Sharing

  • Juyan Li
  • Chunguang Ma
  • Kejia ZhangEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1095)

Abstract

Proxy re-encryption plays an important role in cloud sharing. Ciphertext-policy attribute-based proxy re-encryption (CP-ABPRE) scheme supports access control and can convert the ciphertext under an access policy to a ciphertext under another access policy, which is flexible and efficient for cloud sharing. The existing CP-ABPRE schemes are constructed by bilinear pairing or multi-linear maps which are fragile when the post-quantum comes. In this paper, a unidirectional single-hop CP-ABPRE scheme with small size of public parameters was presented by using trapdoor sampling, and proved secure under learning with errors assumption which is widely believed secure in quantum computer attacks.

Keywords

LWE Proxy re-encryption Attribute-based encryption Cloud sharing 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61472097), the Natural Science Foundation of Heilongjiang Province of China (JJ2019LH1770), the Special Funds of Heilongjiang University of the Fundamental Research Funds for the Heilongjiang Province (RCCXYJ201812) and the Open Fund of the State Key Laboratory of Information Security (2019-ZD-05).

References

  1. 1.
    Ma, C., Li, J., Ouyang, W.: Lattice-based identity-based homomorphic conditional proxy re-encryption for secure big data computing in cloud environment. Int. J. Found. Comput. Sci. 28(6), 645–660 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ma, C., Li, J., Ouyang, W.: A homomorphic proxy re-encryption from lattices. In: Chen, L., Han, J. (eds.) ProvSec 2016. LNCS, vol. 10005, pp. 353–372. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47422-9_21CrossRefGoogle Scholar
  3. 3.
    Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 316–332. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12678-9_19CrossRefGoogle Scholar
  4. 4.
    Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72738-5_19CrossRefGoogle Scholar
  5. 5.
    Liang, K., Fang, L., Susilo, W., et al.: A ciphertext-policy attribute-based proxy re-encryption with chosen-ciphertext security. In: Proceedings of the 5th International Conference on Intelligent Networking and Collaborative Systems, INCoS 2013, Xi’an, China, October, pp. 55–559 (2013)Google Scholar
  6. 6.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_27CrossRefGoogle Scholar
  7. 7.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for finegrained access control of encrypted data. In: Wright, R., Vimercati, S. (eds.) Proceedings of the 13th ACM Conference on Computer and Communications Security, Alexandria, Virginia, USA, pp. 89–98 (2006)Google Scholar
  8. 8.
    Wang, D., Ma, C., Shi, L., Wang, Y.: On the security of an improved password authentication scheme based on ECC. In: Liu, B., Ma, M., Chang, J. (eds.) ICICA 2012. LNCS, vol. 7473, pp. 181–188. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34062-8_24CrossRefGoogle Scholar
  9. 9.
    He, D., Wang, D., Wu, S.: Cryptanalysis and improvement of a password-based remote user authentication scheme without smart cards. Inf. Technol. Control 42(2), 105–112 (2013)Google Scholar
  10. 10.
    Wang, D., Ma, C., Zhang, Q., et al.: Secure password-based remote user authentication scheme against smart card security breach. J. Netw. 8(1), 148 (2013)Google Scholar
  11. 11.
    Liang, X., Cao, Z., Lin, H., Shao, J.: Attribute based proxy re-encryption with delegating capabilities. In: Safavi-Naini, R., Varadharajan, V. (eds.) proceedings of the 4th International Symposium on Information, Computer, and Communications Security, Sydney, Australia, pp. 276–286 (2009)Google Scholar
  12. 12.
    Luo, S., Hu, J., Chen, Z.: Ciphertext policy attribute-based proxy re-encryption. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 401–415. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17650-0_28CrossRefGoogle Scholar
  13. 13.
    Liang, K., Man, H., Liu, J., et al.: A secure and efficient ciphertext-policy attribute-based proxy re-encryption for cloud data sharing. Futur. Gener. Comput. Syst. 52, 95–108 (2015)CrossRefGoogle Scholar
  14. 14.
    Zhang, J., Zhang, Z.: A ciphertext policy attribute-based encryption scheme without pairings. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 324–340. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34704-7_23CrossRefGoogle Scholar
  15. 15.
    Zeng, F., Xu, C.: A novel model for lattice-based authorized searchable encryption with special keyword. Math. Probl. Eng. (2015). Article ID 314621  https://doi.org/10.1155/2015/314621
  16. 16.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_41CrossRefGoogle Scholar
  17. 17.
    Alwen, J., Peikert, C.: generating shorter bases for hard random lattices. Theory Comput. Syst. 48(3), 535–553 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_28CrossRefzbMATHGoogle Scholar
  19. 19.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84C93. ACM (2005)Google Scholar
  20. 20.
    Zeng, P., Choo, K.: A new kind of conditional proxy re-encryption for secure cloud storage. IEEE Access. 6, 70017–70024 (2018)CrossRefGoogle Scholar
  21. 21.
    Xagawa, K.: Cryptography with Lattices. Ph.D. thesis. Department of Mathematical and Computing Sciences Tokyo Institute of Technology (2010)Google Scholar
  22. 22.
    Jiang, M., Hu, Y., Wang, B., et al.: Lattice-based multi-use unidirectional proxy re-encryption. Secur. Commun. Netw. 8(18), 3796–3803 (2016)CrossRefGoogle Scholar
  23. 23.
    Hou, J., Jiang, M., Guo, Y., Song, W.: Identity-based multi-bit proxy re-encryption over lattice in the standard model. In: Li, F., Takagi, T., Xu, C., Zhang, X. (eds.) FCS 2018. CCIS, vol. 879, pp. 110–118. Springer, Singapore (2018).  https://doi.org/10.1007/978-981-13-3095-7_9CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Data Science and TechnologyHeilongjiang UniversityHarbinPeople’s Republic of China
  2. 2.College of Computer Science and TechnologyHarbin Engineering UniversityHarbinPeople’s Republic of China
  3. 3.State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations