Advertisement

Greedily Remove k Links to Hide Important Individuals in Social Network

  • Jie Ji
  • Guohua Wu
  • Chenjian Duan
  • Yizhi Ren
  • Zhen WangEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1095)

Abstract

Closeness centrality is a type of measure that usually used in social network analysis (SNA). For personal privacy, we study how to help important individuals avoid being detected by closeness centrality analysis. In this paper, we present an optimization problem of finding k edges removed to minimize leader node closeness value to hide leader. We consider this problem in the undirected graph and prove its NP-completeness by reduction from the Hamiltonian cycle problem. Hence, we propose a greedy algorithm with a \((1-\frac{1}{e})\) - approximation lower bound and design UpdateCloseness algorithm to reduce time cost by Breadth-First Search algorithm. Experimental results confirm the effectivity of our greedy scheme.

Keywords

Social network analysis Closeness centrality Hiding individuals Greedy algorithm 

References

  1. 1.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Beauchamp, M.A.: An improved index of centrality. Behav. Sci. 10(2), 161–163 (1965)CrossRefGoogle Scholar
  3. 3.
    Bergamini, E., Borassi, M., Crescenzi, P., Marino, A., Meyerhenke, H.: Computing top-k closeness centrality faster in unweighted graphs. In: ALENEX, pp. 68–80. SIAM (2016)Google Scholar
  4. 4.
    Berno, B.: Network formation with closeness incentives. In: Naimzada, A.K., Stefani, S., Torriero, A. (eds.) Networks, Topology and Dynamics, vol. 613, pp. 95–109. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-68409-1_4CrossRefGoogle Scholar
  5. 5.
    Bisenius, P., Bergamin, E., Angriman, E., Meyerhenke, H.: Computing top-k closeness centrality in fully-dynamic graphs. In: ALENEX, pp. 21–35. SIAM (2018)Google Scholar
  6. 6.
    Borassi, M., Crescenzi, P., Marino, A.: Fast and simple computation of top-k closeness centralities. arXiv preprint arXiv:1507.01490 (2015)
  7. 7.
    Chan, S.Y., Leung, I.X., Liò, P.: Fast centrality approximation in modular networks. In: CNIKM, pp. 31–38. ACM (2009)Google Scholar
  8. 8.
    Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Computing classic closeness centrality, at scale. In: COSN, pp. 37–50. ACM (2014)Google Scholar
  9. 9.
    Crescenzi, P., Dangelo, G., Severini, L., Velaj, Y.: Greedily improving our own closeness centrality in a network. TKDD 11(1), 9 (2016)CrossRefGoogle Scholar
  10. 10.
    ERDdS, P., R&wi, A.: On random graphs i. Publ. Math. Debrecen 6, 290–297 (1959)Google Scholar
  11. 11.
    Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry, pp. 35–41 (1977)Google Scholar
  12. 12.
    Gleiser, P.M., Danon, L.: Community structure in jazz. Adv. Complex Syst. 6(04), 565–573 (2003)CrossRefGoogle Scholar
  13. 13.
    Kas, M., Carley, K.M., Carley, L.R.: Incremental closeness centrality for dynamically changing social networks. In: ASONAM, pp. 1250–1258. ACM (2013)Google Scholar
  14. 14.
    Krebs, V.E.: Mapping networks of terrorist cells. Connections 24(3), 43–52 (2002)Google Scholar
  15. 15.
    Le Merrer, E., Le Scouarnec, N., Trédan, G.: Heuristical top-k: fast estimation of centralities in complex networks. Inf. Process. Lett. 114(8), 432–436 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Marchiori, M., Latora, V.: Harmony in the small-world. Phys. A Stat. Mech. Appl. 285(3–4), 539–546 (2000)CrossRefGoogle Scholar
  17. 17.
    Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-i. Math. Program. 14(1), 265–294 (1978)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Okamoto, K., Chen, W., Li, X.-Y.: Ranking of closeness centrality for large-scale social networks. In: Preparata, F.P., Wu, X., Yin, J. (eds.) FAW 2008. LNCS, vol. 5059, pp. 186–195. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69311-6_21CrossRefGoogle Scholar
  19. 19.
    Olsen, P.W., Labouseur, A.G., Hwang, J.H.: Efficient top-k closeness centrality search. In: ICDE, pp. 196–207. IEEE (2014)Google Scholar
  20. 20.
    Ressler, S.: Social network analysis as an approach to combat terrorism: past,present, and future research. Homel. Secur. Aff. 2(2) (2006)Google Scholar
  21. 21.
    Rochat, Y.: Closeness centrality extended to unconnected graphs: the harmonic centrality index. Technical report (2009)Google Scholar
  22. 22.
    Rozemberczki, B., Davies, R., Sarkar, R., Sutton, C.: Gemsec: graph embedding with self clustering (2018)Google Scholar
  23. 23.
    Santos, E.E., Korah, J., Murugappan, V., Subramanian, S.: Efficient anytime anywhere algorithms for closeness centrality in large and dynamic graphs. In: IPDPSW, pp. 1821–1830. IEEE (2016)Google Scholar
  24. 24.
    Sariyuce, A.E., Kaya, K., Saule, E., Catalyurek, U.V.: Incremental algorithms for network management and analysis based on closeness centrality. arXiv preprint arXiv:1303.0422 (2013)
  25. 25.
    Saxena, A., Gera, R., Iyengar, S.: A faster method to estimate closeness centrality ranking. arXiv preprint arXiv:1706.02083 (2017)
  26. 26.
    Shaw, M.E.: Group structure and the behavior of individuals in small groups. J. Psychol. 38(1), 139–149 (1954)CrossRefGoogle Scholar
  27. 27.
    Takhteyev, Y., Gruzd, A., Wellman, B.: Geography of twitter networks. Soc. Netw. 34, 73–81 (2012)CrossRefGoogle Scholar
  28. 28.
    Ter Wal, A.L., Boschma, R.A.: Applying social network analysis in economic geography: framing some key analytic issues. Ann. Reg. Sci. 43(3), 739–756 (2009)CrossRefGoogle Scholar
  29. 29.
    Tong, H., Prakash, B.A., Eliassi-Rad, T., Faloutsos, M., Faloutsos, C.: Gelling, and melting, large graphs by edge manipulation. In: CIKM, pp. 245–254. ACM (2012)Google Scholar
  30. 30.
    Ufimtsev, V., Bhowmick, S.: An extremely fast algorithm for identifying high closeness centrality vertices in large-scale networks. In: IAAA, pp. 53–56. IEEE Press (2014)Google Scholar
  31. 31.
    Wang, D.E.J.: Fast approximation of centrality. Gr. Algorithms Appl. 5(5), 39 (2006)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Waniek, M., Michalak, T.P., Wooldridge, M.J., Rahwan, T.: Hiding individuals and communities in a social network. Nat. Hum. Behav. 2(2), 139 (2018)CrossRefGoogle Scholar
  33. 33.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393(6684), 440 (1998)CrossRefGoogle Scholar
  34. 34.
    Yen, C.C., Yeh, M.Y., Chen, M.S.: An efficient approach to updating closeness centrality and average path length in dynamic networks. In: ICDM, pp. 867–876. IEEE (2013)Google Scholar
  35. 35.
    Zhou, B., Pei, J., Luk, W.: A brief survey on anonymization techniques for privacy preserving publishing of social network data. ACM Sigkdd Explor. Newsl. 10(2), 12–22 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of CyberspaceHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations