Fluid Management

  • Shikha Sharma


Fluid management in thoracic anaesthesia produces a unique challenge to the anaesthesiologist. There is no fixed directive on its management. In this chapter, we endeavour to address this problem and find a workable solution.


  1. 1.
    Gopaldas RR, Bakaeen FG, Dao TK, et al. Video-assisted thoracoscopic versus open thoracotomy lobectomy in a cohort of 13 619 patients. Ann Thorac Surg. 2010;89:1563–70.CrossRefGoogle Scholar
  2. 2.
    Louie BE, Farivar AS, Aye RW, et al. Early experience with robotic lung resection results in similar operative outcomes and morbidity when compared with matched video-assisted thoracoscopic surgery cases. Ann Thorac Surg. 2012;93:1598–604.Google Scholar
  3. 3.
    Parquin F, Marchal M, Mehiri S, et al. Postpneumonectomy pulmonary edema: analysis and risk factors. Eur J Cardiothorac Surg. 1996;10:929–32.CrossRefGoogle Scholar
  4. 4.
    Licker M, de Perrot M, Spiliopoulos A, et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97:1558–65.CrossRefGoogle Scholar
  5. 5.
    Alam N, Park BJ, Wilton A, et al. Incidence and risk factors for lung injury after lung cancer resection. Ann Thorac Surg. 2007;84:1085–91.CrossRefGoogle Scholar
  6. 6.
    Marret E, Miled F, Bazelly B, et al. Risk and protective factors for major complications after pneumonectomy for lung cancer. Inter Cardiovasc Thorac Surg. 2010;10:936–9.CrossRefGoogle Scholar
  7. 7.
    Becker BF, Chappell D, Jacob M. Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol. 2010;105:687–701.CrossRefGoogle Scholar
  8. 8.
    Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch. 2000;440:653–66.CrossRefGoogle Scholar
  9. 9.
    Chappell D, Jacob M, Hofmann-Kiefer K, et al. A rational approach to perioperative fluid management. Anesthesiology. 2008;109:723–40.Google Scholar
  10. 10.
    Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94.CrossRefGoogle Scholar
  11. 11.
    Rehm M, Bruegger D, Christ F, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116:1896–906.Google Scholar
  12. 12.
    Chappell D, Jacob M. Role of the glycocalyx in fluid management: small things matter. Best Pract Res Clin Anaesthesiol. 2014;28:227–34.CrossRefGoogle Scholar
  13. 13.
    Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94.CrossRefGoogle Scholar
  14. 14.
    Rehm M, Haller M, Orth V, et al. Changes in blood volume and hematocrit during acute preoperative volume loading with 5% albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology. 2001;95:849–56.Google Scholar
  15. 15.
    Bruegger D, Schwartz L, Chappell D, et al. Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on- and off-pump coronary artery bypass surgery. Basic Res Cardiol. 2011;106:1111–21.Google Scholar
  16. 16.
    Chappell D, Bruegger D, Potzel J, et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care. 2014;18:538.Google Scholar
  17. 17.
    Chappell D, Dorfler N, Jacob M, et al. Glycocalyx protection reduces leukocyte adhesion after ischemia/reperfusion. Shock. 2010;34:133–9.Google Scholar
  18. 18.
    Chappell D, Heindl B, Jacob M, et al. Sevoflurane reduces leukocyte and platelet adhesion after ischemia-reperfusion by protecting the endothelial glycocalyx. Anesthesiology. 2011;115:483–91.Google Scholar
  19. 19.
    Schmidt EP, Yang Y, Janssen WJ, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med. 2012;18:1217–23.Google Scholar
  20. 20.
    Constantinescu AA, Vink H, Spaan JA. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol. 2003;23:1541–7.CrossRefGoogle Scholar
  21. 21.
    Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation. 2000;101:1500–2.CrossRefGoogle Scholar
  22. 22.
    Huxley VH, Williams DA. Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am J Physiol Heart Circ Physiol. 2000;278:1177–85.CrossRefGoogle Scholar
  23. 23.
    Collins SR, Blank RS, Deatherage LS, et al. Special article: the endothelial glycocalyx: emerging concepts in pulmonary edema and acute lung injury. Anesth Analg. 2013;117:664–74.Google Scholar
  24. 24.
    Dull RO, Mecham I, McJames S. Heparan sulfates mediate pressure-induced increase in lung endothelial hydraulic conductivity via nitric oxide/reactive oxygen species. Am J Physiol Lung Cell Mol Physiol. 2007;292:1452–8.CrossRefGoogle Scholar
  25. 25.
    Dull RO, Jo H, Sill H, et al. The effect of varying albumin concentration and hydrostatic pressure on hydraulic conductivity and albumin permeability of cultured endothelial monolayers. Microvasc Res. 1991;41:390–407.Google Scholar
  26. 26.
    Zeldin RA, Normandin D, Landtwing D, et al. Postpneumonectomy pulmonary edema. J Thorac Cardiovasc Surg. 1984;87:359–65.Google Scholar
  27. 27.
    Blank RS, Hucklenbruch C, Gurka KK, et al. Intraoperative factors and the risk of respiratory complications after pneumonectomy. Ann Thorac Surg. 2011;92:1188–94.Google Scholar
  28. 28.
    Kutlu CA, Williams EA, Evans TW, et al. Acute lung injury and acute respiratory distress syndrome after pulmonary resection. Ann Thorac Surg. 2000;69:376–80.Google Scholar
  29. 29.
    Jacob M, Chappell D, Rehm M. The ‘third space’—fact or fiction? Best Pract Res Clin Anaesthesiol. 2009;23:145–57.CrossRefGoogle Scholar
  30. 30.
    Slinger P. Fluid management during pulmonary resection surgery. Ann Card Anaesth. 2002;5:220–4.PubMedGoogle Scholar
  31. 31.
    Chau EH, Slinger P. Perioperative fluid management for pulmonary resection surgery and esophagectomy. Semin Cardiothorac Vasc Anesth. 2014;18:36–44.CrossRefGoogle Scholar
  32. 32.
    Zarins CK, Rice CL, Peters RM, et al. Lymph and pulmonary response to isobaric reduction in plasma oncotic pressure in baboons. Circ Res. 1978;43:925–30.Google Scholar
  33. 33.
    Nohl-Oser HC. An investigation of the anatomy of the lymphatic drainage of the lungs as shown by the lymphatic spread of bronchial carcinoma. Ann R Coll Surg Engl. 1972;51:157–76.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Turnage WS, Lunn JJ. Postpneumonectomy pulmonary edema. A retrospective analysis of associated variables. Chest. 1993;103:1646–50.CrossRefGoogle Scholar
  35. 35.
    Verheijen-Breemhaar L, Bogaard JM, van den Berg B, et al. Postpneumonectomy pulmonary oedema. Thorax. 1988;43:323–6.Google Scholar
  36. 36.
    Laine GA, Allen SJ, Katz J, et al. Effect of systemic venous pressure elevation on lymph flow and lung edema formation. J Appl Physiol. 1986;61:1634–8.Google Scholar
  37. 37.
    Pedoto A, Amar D. Right heart function in thoracic surgery: role of echocardiography. Curr Opin Anaesth. 2009;22:44–9.CrossRefGoogle Scholar
  38. 38.
    Reed CE, Dorman BH, Spinale FG. Mechanisms of right ventricular dysfunction after pulmonary resection. Ann Thorac Surg. 1996;62:225–31.CrossRefGoogle Scholar
  39. 39.
    Okada M, Ota T, Matsuda H, et al. Right ventricular dysfunction after major pulmonary resection. J Thorac Cardiovasc Surg. 1994;108:503–11.Google Scholar
  40. 40.
    Abbas SM, Hill AG. Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia. 2008;63:44–51.CrossRefGoogle Scholar
  41. 41.
    Phan TD, Ismail H, Heriot AG, et al. Improving perioperative outcomes: fluid optimization with the esophageal Doppler monitor, a metaanalysis and review. J Am Coll Surg. 2008;207:935–41.Google Scholar
  42. 42.
    Brandstrup B. Fluid therapy for the surgical patient. Best Pract Res Clin Anaesthesiol. 2006;20:265–83.CrossRefGoogle Scholar
  43. 43.
    Corcoran T, Rhodes JE, Clarke S, et al. Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth Analg. 2012;114:640–51.Google Scholar
  44. 44.
    Chong MA, Wang Y, Berbenetz NM, et al. Does goal-directed haemodynamic and fluid therapy improve peri-operative outcomes?: a systematic review and meta-analysis. Eur J Anaesthesiol. 2018;35:469–83.Google Scholar
  45. 45.
    Bundgaard-Nielsen M, Holte K, Secher NH, et al. Monitoring of peri-operative fluid administration by individualized goal-directed therapy. Acta Anaesthesiol Scand. 2007;51:331–40.Google Scholar
  46. 46.
    Cecconi M, Parsons AK, Rhodes A. What is a fluid challenge? Curr Opin Crit Care. 2011;17:290–5.CrossRefGoogle Scholar
  47. 47.
    Ansari BM, Zochios V, Falter F, et al. Physiological controversies and methods used to determine fluid responsiveness: a qualitative systematic review. Anaesthesia. 2016;71:94–105.Google Scholar
  48. 48.
    Funk DJ, Moretti EW, Gan TJ. Minimally invasive cardiac output monitoring in the perioperative setting. Anesth Analg. 2009;108:887–97.CrossRefGoogle Scholar
  49. 49.
    Thiele RH, Bartels K, Gan TJ. Inter-device differences in monitoring for goal-directed fluid therapy. Can J Anaesth. 2015;62:169–81.CrossRefGoogle Scholar
  50. 50.
    Ahn HJ, Kim JA, Lee AR, et al. The risk of acute kidney injury from fluid restriction and hydroxyethyl starch in thoracic surgery. Anesth Analg. 2016;122:186–93.Google Scholar
  51. 51.
    National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564-2575.Google Scholar
  52. 52.
    Licker M, Fauconnet P, Villiger Y, et al. Acute lung injury and outcomes after thoracic surgery. Curr Opin Anaesthesiol. 2009;22:61–7.Google Scholar
  53. 53.
    Staub N. Pulmonary edema due to increased microvascular permeability to fluid and protein. Circ Res. 1978;43:143–51.CrossRefGoogle Scholar
  54. 54.
    Klein J. Normobaric pulmonary oxygen toxicity. Anesth Analg. 1990;70:195–207.CrossRefGoogle Scholar
  55. 55.
    Kohl B, Deutschman CS. The inflammatory response to surgery and trauma. Curr Opin Crit Care. 2006;12:325–32.CrossRefGoogle Scholar
  56. 56.
    Ray JF 3rd, Yost L, Moallem S, et al. Immobility, hypoxemia, and pulmonary arteriovenous shunting. Arch Surg. 1974;109:537–41.CrossRefGoogle Scholar
  57. 57.
    Kobayashi M, Koh M, Irinoda T, et al. Stroke volume variation as a predictor of intravascular volume depression and possible hypotension during the early postoperative period after esophagectomy. Ann Surg Oncol. 2009;16:1371–7.Google Scholar
  58. 58.
    Michard F. Bedside assessment of extravascular lung water by dilution methods: temptations and pitfalls. Crit Care Med. 2007;35:1186–92.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Shikha Sharma
    • 1
  1. 1.Institute of Anaesthesiology, Pain and Perioperative MedicineSir Ganga Ram HospitalNew DelhiIndia

Personalised recommendations