Advertisement

Lung Physiology Relevant to Thoracic Anesthesia

  • Anil Kumar Jain
Chapter
  • 20 Downloads

Abstract

Anesthesia practice involves manipulating respiratory system and respiratory events are major cause of morbidity and mortality even in non thoracic patients. Understanding mechanisms of deranged pulmonary functions during one lung ventilation, patient position and thoracic surgery is desirable for managing such patients. This should begin with examining normal pulmonary functions and it’s mechanism in health.

References

  1. 1.
    Kavanach B, Hedenstierna G. Respiratory physiology and pathophysiology. In: Miller RS, editor. Miller’s anaesthesia. 8th ed. Philadelphia: Elsevier; 2015. p. 444–72.Google Scholar
  2. 2.
    Grassino AE, Rpissos G. Static properties of the lung and chest wall. In: Crystal RG, West JB, Weibel ER, et al. editors. The lung: scientific foundations. 2nd ed. Philadelphia: Lippincott-Raven; 1997. p. 1187.Google Scholar
  3. 3.
    Pedley TJ, Kamm RD. Dynamics of gas flow and pressure flow relationship. In: Crystal RG, West JB, Weibel, Barnes PJ, editors. The lung: scientific foundations. 2nd ed. Philadelphia: Lippincott Raven; 1997. p. 1365.Google Scholar
  4. 4.
    Slats AM, Janssen K, van Schadewijk A, et al. Bronchial inflammation and airway responses to deep inspiration in asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;176(2):121–8.Google Scholar
  5. 5.
    Calverley PM, Koulouris NG. Flow limitation and dynamic hyperinflation: key concepts in modern respiratory physiology. Eur Respir J. 2005;25(1):186–99.CrossRefGoogle Scholar
  6. 6.
    Mead J, Turner JM, Macklem PT, et al. Significance of the relationship between lung recoil and maximum expiratory flow. J Appl Physiol. 1967;22(1):95–108.Google Scholar
  7. 7.
    Verbeken EK, Cauberghs M, Mertens I, et al. Tissue and airway impedance of excised normal, senile, and emphysematous lungs. J Appl Physiol (1985). 1992;72(6):2343–53.Google Scholar
  8. 8.
    Bachofen H, Scherrer M. Lung tissue resistance in diffuse interstitial pulmonary fibrosis. J Clin Invest. 1967;46(1):133–40.CrossRefGoogle Scholar
  9. 9.
    Hubmayr RD. Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med. 2002;165(12):1647–53.CrossRefGoogle Scholar
  10. 10.
    Milic-Emile J. Ventilation distribution. In: Hammid Q, Shannon J, Martin J, editors. Physiologic bases of respiratory disease. Hamilton, ON: BC Decker; 2005.Google Scholar
  11. 11.
    Ganesan S, Lai-Fook SJ, Schürch S. Alveolar liquid pressures in nonedematous and kerosene-washed rabbit lung by micropuncture. Respir Physiol. 1989;78(3):281–95.CrossRefGoogle Scholar
  12. 12.
    Mayo JR, MacKay AL, Whittall KP, et al. Measurement of lung water content and pleural pressure gradient with magnetic resonance imaging. J Thorac Imaging. 1995;10(1):73–81.Google Scholar
  13. 13.
    Petersson J, Sánchez-Crespo A, Rohdin M, et al. Physiological evaluation of a new quantitative SPECT method measuring regional ventilation and perfusion. J Appl Physiol (1985). 2004;96(3):1127–36.Google Scholar
  14. 14.
    Bryan AC, Bentivoglio LG, Beerel F, et al. Factors affecting regional distribution of ventilation and perfusion in the lung. J Appl Physiol. 1964;19:395–402.Google Scholar
  15. 15.
    Bake B, Wood L, Murphy B, et al. Effect of inspiratory flow rate on regional distribution of inspired gas. J Appl Physiol. 1974;37(1):8–17.Google Scholar
  16. 16.
    Milic-Emili J, Torchio R, D’Angelo E. Closing volume: a reappraisal (1967–2007). Eur J Appl Physiol. 2007;99(6):567–83.CrossRefGoogle Scholar
  17. 17.
    Teculescu DB, Damel MC, Costantino E, et al. Computerized single-breath nitrogen washout: predicted values in a rural French community. Lung. 1996;174(1):43–55.Google Scholar
  18. 18.
    Haefeli-Bleuer B, Weibel ER. Morphometry of the human pulmonary acinus. Anat Rec. 1988;220(4):401–14.CrossRefGoogle Scholar
  19. 19.
    Adaro F. Limiting role of stratification in alveolar exchange of oxygen. Respir Physiol. 1976;26(2):195–206.CrossRefGoogle Scholar
  20. 20.
    Hughes JMB. Distribution of pulmonary blood flow. In: Crystal RG, West JB, Weibel ER, Barnes PJ, editors. The lung: scientific foundations. 2nd ed. Philadelphia: Lippincott-Raven; 1997. p. 1523–36.Google Scholar
  21. 21.
    West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol. 1964;19:713–24.CrossRefGoogle Scholar
  22. 22.
    Hughes JM, Glazier JB, Maloney JE, et al. Effect of lung volume on the distribution of pulmonary blood flow in man. Respir Physiol. 1968;4:58–72.Google Scholar
  23. 23.
    West JB. Studies of pulmonary and cardiac function using short-lived isotopes oxygen-15, nitrogen-13 and carbon-11. Prog At Med. 1968;2:39–64.PubMedGoogle Scholar
  24. 24.
    Glenny RW. Blood flow distribution in the lung. Chest. 1998;114(1 Suppl):8S–16S.CrossRefGoogle Scholar
  25. 25.
    Robertson HT, Hlastala MP. Microsphere maps of regional blood flow and regional ventilation. J Appl Physiol (1985). 2007;102(3):1265–72.CrossRefGoogle Scholar
  26. 26.
    Dawson CA, Linehan JH. Dynamics of blood flow and pressure flow relationships. In: Crystal RG, West JB, Weibel ER, Barnes PJ, editors. The lung: scientific foundations. 2nd ed. Philadelphia: Lippincott-Raven; 1997. p. 1503–22.Google Scholar
  27. 27.
    Bachofen H, Schurch S, Weibel ER. Experimental hydrostatic pulmonary edema in rabbit lungs. Barrier lesions. Am Rev Respir Dis. 1993;147:997–1004.CrossRefGoogle Scholar
  28. 28.
    Jeffery PK. Remodeling and inflammation of bronchi in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2004;1:176–83.CrossRefGoogle Scholar
  29. 29.
    Townsley MI, Fu Z, Mathieu-Costello O, et al. Pulmonary microvascular permeability. Responses to high vascular pressure after induction of pacing induced heart failure in dogs. Circ Res. 1995;77:317–25.Google Scholar
  30. 30.
    Sommer N, Dietrich A, Schermuly RT, et al. Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur Respir J. 2008;32(6):1639–51.CrossRefGoogle Scholar
  31. 31.
    Archer SL, Weir EK, Reeve HL, et al. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation. Adv Exp Med Biol. 2000;475:219–40.Google Scholar
  32. 32.
    Sham JS, Crenshaw BR Jr, Deng LH, et al. Effects of hypoxia in porcine pulmonary arterial myocytes: roles of K(V) channel and endothelin-1. Am J Physiol Lung Cell Mol Physiol. 2000;279(2):L262–72.Google Scholar
  33. 33.
    McMahon TJ, Moon RE, Luschinger BP, et al. Nitric oxide in the human respiratory cycle. Nat Med. 2002;8(7):711–7.CrossRefGoogle Scholar
  34. 34.
    O’Brien RF, Robbins RJ, McMurtry IF. Endothelial cells in culture produce a vasoconstrictor substance. J Cell Physiol. 1987;132(2):263–70.CrossRefGoogle Scholar
  35. 35.
    Hieda HS, Gomez-Sanchez CE. Hypoxia increases endothelin release in bovine endothelial cells in culture, but epinephrine, norepinephrine, serotonin, histamine and angiotensin II do not. Life Sci. 1990;47(3):247–51.CrossRefGoogle Scholar
  36. 36.
    Rakugi H, Tabuchi Y, Nakamaru M, et al. Evidence for endothelin-1 release from resistance vessels of rats in response to hypoxia. Biochem Biophys Res Commun. 1990;169(3):973–7.CrossRefGoogle Scholar
  37. 37.
    Bjertnaes LJ, Hauge A, Nakken KF, et al. Hypoxic pulmonary vasoconstriction: inhibition due to anesthesia. Acta Physiol Scand. 1976;96(2):283–5.Google Scholar
  38. 38.
    Hedenstierna G. Contribution of multiple inert gas elimination technique to pulmonary medicine. Ventilation-perfusion relationships during anaesthesia. Thorax. 1995;50(1):85–91.CrossRefGoogle Scholar
  39. 39.
    Moller JT, Cluitmans P, Rasmussen LS, Houx P, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International study of post-operative cognitive dysfunction. Lancet. 1998;351(9106):857–61.Google Scholar
  40. 40.
    Hedenstierna G. Effects of body position on ventilation/perfusion matching. In: Gulio A, editor. Anaestheisa, pain, intensive carfe and emergency medicine—APICE. Milan: Springer; 2005. p. 3–15.CrossRefGoogle Scholar
  41. 41.
    Tenling A, Hachenberg T, Tydén H, et al. Hedenstierna G. Atelectasis and gas exchange after cardiac surgery. Anesthesiology. 1998;89(2):371–8.Google Scholar
  42. 42.
    Lindberg P, Gunnarsson L, Tokics L, et al. Atelectasis and lung function in the postoperative period. Acta Anaesthesiol Scand. 1992;36(6):546–53.Google Scholar
  43. 43.
    Hedenstierna G, Edmark L. The effects of anesthesia and muscle paralysis on the respiratory system. Intensive Care Med. 2005;31(10):1327–35.CrossRefGoogle Scholar
  44. 44.
    Musch G, Harris RS, Vidal Melo MF, et al. Mechanism by which a sustained inflation can worsen oxygenation in acute lung injury. Anesthesiology. 2004;100(2):323–30.Google Scholar
  45. 45.
    Rothen HU, Sporre B, Engberg G, et al. Influence of gas composition on recurrence of atelectasis after a reexpansion maneuver during general anesthesia. Anesthesiology. 1995;82(4):832–42.Google Scholar
  46. 46.
    Hedenstierna G, Tokics L, Lundquist H, et al. Phrenic nerve stimulation during halothane anesthesia. Effects of atelectasis. Anesthesiology. 1994;80(4):751–60.Google Scholar
  47. 47.
    Pelosi P, Ravagnan I, Giurati G, et al. Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthesiology. 1999;91(5):1221–31.Google Scholar
  48. 48.
    Coussa M, Proietti S, Schnyder P, et al. Prevention of atelectasis formation during the induction of general anesthesia in morbidly obese patients. Anesth Analg. 2004;98(5):1491–5.Google Scholar
  49. 49.
    Ishikawa S, Nakazata K, Makita K. Progressive changes in arterial oxygenation during one-lung anaesthesia are related to the response to compression of the non dependent lung. Br J Anaesth. 2003;90:21–6.CrossRefGoogle Scholar
  50. 50.
    Benumof JL. One-lung ventilation and hypoxic pulmonary vasoconstriction: implications for anesthetic management. Anesth Analg. 1985;64(8):821–33.CrossRefGoogle Scholar
  51. 51.
    Karzai W, Schwarzkopf K. Hypoxemia during one-lung ventilation: prediction, prevention, and treatment. Anesthesiology. 2009;110(6):1402–11.CrossRefGoogle Scholar
  52. 52.
    Hedenstierna G, Reber A. Manipulating pulmonary blood flow during one-lung anaesthsia. Acta Anaesthesiol Scand. 1996;40(1):2–4.CrossRefGoogle Scholar
  53. 53.
    Klingstedt C, Hedenstierna G, Baehrendtz S, et al. Ventilation-perfusion relationships and atelectasis formation in the supine and lateral positions during conventional mechanical and differential ventilation. Acta Anaesthesiol Scand. 1990;34:421–9.Google Scholar
  54. 54.
    Tusman G, Böhm SH, Melkun F, et al. Alveolar recruitment strategy increases arterial oxygenation during one-lung ventilation. Ann Thorac Surg. 2002;73:1204–9.Google Scholar
  55. 55.
    Tusman G, Böhm SH, Sipmann FS, et al. Lung recruitment improves the efficiency of ventilation and gas exchange during one-lung ventilation anesthesia. Anesth Analg. 2004;98:1604–9.Google Scholar
  56. 56.
    Slinger PD, Kruger M, McRae K, et al. Relation of the static compliance curve and positive end-expiratory pressure to oxygenation during one-lung ventilation. Anesthesiology. 2001;95:1096–102.Google Scholar
  57. 57.
    Ishikawa S, Nakazawa K, Makita K. Progressive changes in arterial oxygenation during one-lung anaesthesia are related to the response to compression of the non-dependent lung. Br J Anaesth. 2003;90:21–6.CrossRefGoogle Scholar
  58. 58.
    Pfitzer J. Acute lung injury following one-lung anaesthesia. Br J Anaesth. 2003author reply;91:153–4.CrossRefGoogle Scholar
  59. 59.
    Moutafis M, Liu N, Dalibon N, et al. The effects of inhaled nitric oxide and its combination with intravenous almitrine on Pao2 during one-lung ventilation in patients undergoing thoracoscopic procedures. Anesth Analg. 1997;85:1130–5.Google Scholar
  60. 60.
    Silva-Costa-Gomes T, L. Gallart, J. Vallès, et al. Low- vs high-dose almitrine combined with nitric oxide to prevent hypoxia during open-chest one-lung ventilation. Br J Anaesth. 2005;95:410–6.Google Scholar
  61. 61.
    Lefevre GR, Kowalski SE, Girling LG, et al. Improved arterial oxygenation after oleic acid lung injury in the pig using a computer-controlled mechanical ventilator. Am J Respir Crit Care Med. 1996;154(5):1567–72.CrossRefGoogle Scholar
  62. 62.
    Boker A, Graham MR, Walley KR, et al. Improved arterial oxygenation with biologically variable or fractal ventilation using low tidal volumes in a porcine model of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;165(4):456–62.Google Scholar
  63. 63.
    Boker A, Haberman CJ, Girling L, et al. Variable ventilation improves perioperative lung function in patients undergoing abdominal aortic aneurysmectomy. Anesthesiology. 2004;100(3):608–16.Google Scholar
  64. 64.
    Lloyd TC Jr. Influence of blood pH on hypoxic pulmonary vasoconstriction. J Appl Physiol. 1966;21(2):358–64.CrossRefGoogle Scholar
  65. 65.
    Benumof JL, Mathers JM, Wahrenbrock EA. Cyclic hypoxic pulmonary vasoconstriction induced by concomitant carbon dioxide changes. J Appl Physiol. 1976;41(4):466–9.CrossRefGoogle Scholar
  66. 66.
    Benumof JL, Wahrenbrock EA. Blunted hypoxic pulmonary vasoconstriction by increased lung vascular pressures. J Appl Physiol. 1975;38(5):846–50.CrossRefGoogle Scholar
  67. 67.
    Bergofsky EH, Lehr DE, Fishman AP. The effect of changes in hydrogen ion concentration on the pulmonary circulation. J Clin Invest. 1962;41:1492–502.CrossRefGoogle Scholar
  68. 68.
    Bardoczky GI, Szegedi LL, d’Hollander AA, et al. Two-lung and one-lung ventilation in patients with chronic obstructive pulmonary disease: the effects of position and FiO2. Anesth Analg. 2000;90(1):35–41.Google Scholar
  69. 69.
    Albert RK. Prone ventilation. Clin Chest Med. 2000;21(3):511–7.CrossRefGoogle Scholar
  70. 70.
    Pelosi P, Croci M, Calappi E, et al. The prone positioning during general anesthesia minimally affects respiratory mechanics while improving functional residual capacity and increasing oxygen tension. Anesth Analg. 1995;80(5):955–60.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Anil Kumar Jain
    • 1
  1. 1.Institute of Anaesthesiology, Pain and Perioperative MedicineSir Ganga Ram HospitalNew DelhiIndia

Personalised recommendations