Advertisement

Development of Bryophytes as a New Model System to Understand the Phenomenon of Terrestrialization with Environmental Changes

  • Sandhya Yadav
  • Subhankar Biswas
  • Akanksha Srivastava
  • Yogesh MishraEmail author
Chapter
Part of the Energy, Environment, and Sustainability book series (ENENSU)

Abstract

Bryophytes are earliest diverging lineages of the extant land plants with around 25,000 species distributed all over the world. Bryophytes can be further classified into three main classes viz. Liverworts, Hornworts and Mosses that grow on a wide range of habitats. Bryophytes, with high ecological and economic values, occupy a very important position in the evolution of terrestrial plants. During the transition of aquatic to terrestrial habitat (terrestrialization), bryophytes got exposed to global climate changes as well as dehydrating atmosphere of terrestrial habitats that led to the desiccation of plant tissues. In order to tolerate the environmental alterations and to protect themselves from abiotic stresses, bryophytes must have enabled themselves to develop certain adaptive strategies. In order to understand these adaptive strategies at molecular level, attempts have been made to develop certain bryophytes as new model system such as Physcomitrella patens and Marchantia polymorpha. In the current chapter we will addresses how does these model systems have been used to address the uniqueness of bryophytes in terms of their capabilities behind the conquering the land i.e. terrestrialization.

Keywords

Alternation of generation Bryophytes Marchantia polymorpha Physcomitrella patens Terrestrialization 

Notes

Acknowledgements

Sandhya Yadav is thankful to UGC for Junior Research fellowship (JRF), Subhankar Biswas is grateful to CSIR for JRF and Akansha Srivastava is gratified INSPIRE for JRF. Dr. Yogesh Mishra is thankful to UGC- Start up grant.

References

  1. Aharon O, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10.  https://doi.org/10.1111/j.1574-6968.2007.00650.xCrossRefGoogle Scholar
  2. Arancibia-Avila P, Coleman JR, Russin WA, Graham JM, Graham LE (2001) Carbonic anhydrase localization in charophycean green algae: ecological and evolutionary significance. Int J Plant Sci 162:127–135.  https://doi.org/10.1086/317908CrossRefGoogle Scholar
  3. Blackwell WH (2003) Two theories of origin of the land-plant sporophyte: which is left standing? Bot Rev 69:125.  https://doi.org/10.1663/0006-8101
  4. Bower FO (1908) The origin of a land flora. A theory based upon the facts of alternation. MacMillan and Co., Limited, New York.  https://doi.org/10.5962/bhl.title.1698CrossRefGoogle Scholar
  5. Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C, Aki SS, Althoff F, Araki T, Arteaga-Vazquez MA, Balasubrmanian SK, Barry K, Bauer D, Boehm CR, Briginshaw L, Caballero-Perez J, Catarino B, Chen F, Chiyoda S, Chovatia M, Davies KM, DelmansM Demura T, Dierschke T, Dolan L, Dorantes-Acosta AE, Eklund DM, Florent SN, Flores-Sandoval E, Fujiyama A, Fukuzawa H, Galik B, Grimanelli D, Grimwood J, Grossniklaus U, Hamada T, Haseloff J, Hetherington AJ, Higo A, Hirakawa Y, Hundley HN, Ikeda Y, Inoue K, Inoue S, Ishida S, Jia Q, Kakita M, Kanazawa T, Kawai Y, Kawashima T, Kennedy M, Kinose K, Kinoshita T, Kohara Y, Koide E, Komatsu K, Kopischke S, Kubo M, Kyozuka J, Lagercrantz U, Lin SS, Lindquist E, Lipzen AM, Lu CW, Luna ED, Martienssen RA, Minamino N, Mizutani M, Mizutani M, Mochizuki N, Monte I, Mosher R, Nagasaki H, Nakagami H, Naramoto S, Nishitani K, Ohtani M, Okamoto T, Okumura M, Phillips J, Pollak B, Reinders A, Ro vekamp M, Sano R, Sawa S, Schmid MW, Shirakawa M, Solano R, Spunde A, Suetsugu N, Sugano S, Sugiyama A, Sun R, Suzuki Y, Takenaka M, Takezawa D, Tomogane H, Tsuzuki M, Ueda T, Umeda M, Ward JM, Watanabe Y, Yazaki K, Yokoyama R, Yoshitake Y, Yotsui Y, Zachgo, Schmutz J (2017) Insights into land plant evolution garnered from the Marchantia polymorpha Genome. Cell 171:287–304.  https://doi.org/10.1016/j.cell.2017.09.030CrossRefPubMedGoogle Scholar
  6. Buda GJ, Barnes WJ, Fich EA, Park S, Yeats TH, Zhao L, Domozych DS, Rosea JKC (2013) An ATP binding cassette transporter is required for cuticular wax deposition and desiccation tolerance in the moss Physcomitrella patens. Plant Cell 25:4000–4013.  https://doi.org/10.1105/tpc.113.117648CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chater CCC, Caine RS, Fleming AJ, Gray JE (2017) Origins and evolution of stomatal development. Plant Physiol 174:624–638.  https://doi.org/10.1104/pp.17.00183CrossRefPubMedPubMedCentralGoogle Scholar
  8. Coruh C, Cho SH, Shahid S, Liu Q, Wierzbicki A, Axtella MJ (2015) Comprehensive annotation of Physcomitrella patens small RNA loci reveals that the heterochromatic short interfering RNA pathway is largely conserved in land plants. Plant Cell 27:2148–2162.  https://doi.org/10.1105/tpc.15.00228CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cui F, Brosche M, Lehtonen MT, Amiryousefi A, Xu E, Punkkinen M, Valkonen JPT, Fujii H, Overmyer K (2016) Dissecting abscisic acid signaling pathways involved in cuticle formation. Mol Plant 9:926–938.  https://doi.org/10.1016/j.molp.2016.04.001CrossRefPubMedGoogle Scholar
  10. Delwiche CF, Graham LE, Thomson N (1989) Lignin-like compounds and sporopollenin coleochaete, an algal model for land plant ancestry. Science 245:399–401.  https://doi.org/10.1126/science.245.4916.399CrossRefPubMedGoogle Scholar
  11. Elster JD, Peter D, L’ubomir K, Lucia V, Katarina Š, Antonio BP (2008) Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from the Antarctic, Arctic and Slovakia. Biologia 63:843–851.  https://doi.org/10.2478/s11756-008-0111-2
  12. Graham LE, Arancibia-Avila P, Taylor WA, Strother PK, Cook ME (2012) Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) models early plant adaptation to land. Am J Bot 99:130–144.  https://doi.org/10.3732/ajb.1100245CrossRefPubMedGoogle Scholar
  13. Hay A, Tsiantis M (2010) KNOX genes: versatile regulators of plant development and diversity. Development 137:3153–3165.  https://doi.org/10.1242/dev.030049CrossRefPubMedGoogle Scholar
  14. Hermsen C, Koprivova A, Matthewman C, Wesenberg D, Krauss GJ, Kopriva S (2010) Regulation of sulfate assimilation in Physcomitrella patens: mosses are different! Planta 232:461–470.  https://doi.org/10.1007/s00425-010-1190-1CrossRefPubMedGoogle Scholar
  15. Jang G, Yi K, Pires ND, Menand B, Dolan L (2011) RSL genes are sufficient for rhizoid system development in early diverging land plants. Development 138:2273–2281.  https://doi.org/10.1242/dev.060582CrossRefPubMedGoogle Scholar
  16. Karsten U, Lütz C, Holzinger A (2010) Ecophysiological performance of the aeroterrestrial green alga Klebsormidium crenulatum (charophyceae, streptophyta) isolated from an alpine soil crust with an emphasis on desiccation stress. J Phycol 46:1187–1197.  https://doi.org/10.1111/j.1529-8817.2010.00921.x
  17. Lang D, Zimmer AD, Rensing SA, Reski R (2008) Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Plant Sci 13:542–549CrossRefGoogle Scholar
  18. Li L, Aslam M, Rabbi F, Vanderwel MC, Ashton NW, Suh D (2018) PpORS, an ancient type III polyketide synthase, is required for integrity of leaf cuticle and resistance to dehydration in the moss, Physcomitrella patens. Planta 247:527–541.  https://doi.org/10.1007/s00425-017-2806-5
  19. Lienard D, Durambur G, Kiefer-Meyer MC, Nogue F, Menu-Bouaouiche L, Charlot F, Gomord V, Lassalles J (2008) Water transport by aquaporins in the extant plant Physcomitrella patens. Plant Physiol 146:1207–1218.  https://doi.org/10.1104/pp.107.111351CrossRefPubMedPubMedCentralGoogle Scholar
  20. Markmann-Mulisch U, Wendeler E, Zobell O, Schween G, Steinbiss H, Reissa B (2007) Differential requirements for RAD51 in Physcomitrella patens and Arabidopsis thaliana development and DNA damage repair. Plant Cell 19:3080–3089.  https://doi.org/10.1105/tpc.107.054049CrossRefPubMedPubMedCentralGoogle Scholar
  21. Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E, Linstead P, Schaefer DG, Dolan L (2007) An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316:1477–1480.  https://doi.org/10.1126/science.1142618CrossRefPubMedGoogle Scholar
  22. Miyazaki S, Hara M, Ito S, Tanaka K, Asami T, Hayashi K, Kawaide H, Nakajima M (2018) An ancestral gibberellin in a moss Physcomitrella patens. Mol Plant 11:1097–1100.  https://doi.org/10.1016/j.molp.2018.03.010CrossRefPubMedGoogle Scholar
  23. Moody LA, Kelly S, Rabbinowitsch E, Langdale JA (2018) Genetic regulation of the 2D to 3D growth transition in the moss Physcomitrella patens. Curr Biol 28:473–478.  https://doi.org/10.1016/j.pbi.2018.10.001CrossRefPubMedPubMedCentralGoogle Scholar
  24. Pinnola A, Dall’Osto L, Gerotto C, Morosinotto T, Bassi R, Alboresia A (2013) Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens. Plant Cell 25:3519–3534.  https://doi.org/10.1105/tpc.113.114538CrossRefPubMedPubMedCentralGoogle Scholar
  25. Pires N, Dolan L (2010) Origin and diversification of basic-helix-loophelix proteins in plants. Mol Biol Evol 27:862–874.  https://doi.org/10.1093/molbev/msp288CrossRefPubMedGoogle Scholar
  26. Prigge MJ, Lavy M, Ashton NW, Estelle M (2010) Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway. Curr Biol 20:1907–1912.  https://doi.org/10.1016/j.cub.2010.08.050CrossRefPubMedGoogle Scholar
  27. Qui YL, Palmer JD (1999) Phylogeny of early land plants: insights from genes and genomes. Trends Plant Sci 4:26–30.  https://doi.org/10.1016/s1360-1385(98)01361-2CrossRefGoogle Scholar
  28. Raven JA (2002) Selection pressures on stomatal evolution. New Phytol 153:371–386.  https://doi.org/10.1046/j.0028-646x.2001.00334.xCrossRefGoogle Scholar
  29. Rozema J, Blokker P, Mayoral Fuertes MA, Broekman R (2009) UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles, seed coats and wood: evaluation of a proxy for solar UV radiation. Photochem Photobiol Sci 8:1233–1243.  https://doi.org/10.1039/b904515eCrossRefPubMedGoogle Scholar
  30. Shimakawa G, Ishizaki K, Tsukamoto S, Tanaka M, Sejima T, Miyake (2017) The liverwort, Marchantia, drives alternative electron flow using a flavodiiron protein to protect PSI. Plant Physiol 173:1636–1647.  https://doi.org/10.1104/pp.16.01038CrossRefPubMedPubMedCentralGoogle Scholar
  31. Stevenson SR, Kamisugi Y, Trinh CH, Schmutz J, Jenkins JW, Grimwood J, Muchero W, Tuskan GA, Rensing SA, Lang D, Reski R, Melkonian M, Rothfels CJ, Li FW, Larsson A, Wong GK, Edwards TA, Cuming AC (2016) Genetic analysis of Physcomitrella patens identifies ABSCISIC ACID NON-RESPONSIVE, a regulator of ABA responses unique to basal land plants and required for desiccation tolerance. Plant Cell 28:1310–1327.  https://doi.org/10.1105/tpc.16.00091CrossRefPubMedPubMedCentralGoogle Scholar
  32. Van Buren R, Pardo J, Wai CM, Evans S, Bartelsd D (2019) Massive tandem proliferation of ELIPs supports convergent evolution of desiccation tolerance across land plants. Plant Physiol 179:1040–1049CrossRefGoogle Scholar
  33. Vietor R, Loutelier-Bourhis C, Fitchette A, Margerie P, Gonneau M, Faye L, Lerouge P (2003) Protein N-glycosylation is similar in the moss Physcomitrella patens and in higher plants. Planta 218:269–275CrossRefGoogle Scholar
  34. Wolf L, Rizzini L, Stracke R, Ulm R, Rensing SA (2010) The molecular and physiological responses of Physcomitrella patens to ultraviolet-B radiation. Plant Physiol 153:1123–1134CrossRefGoogle Scholar
  35. Yasumura Y, Crumpton-Taylor M, Fuentes S, Harberd NP (2007) Step-by-Step Acquisition of the Gibberellin-DELLA Growth-regulatory Mechanism during Land-Plant Evolution. Curr Biol 17:1225–1230CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sandhya Yadav
    • 1
  • Subhankar Biswas
    • 1
  • Akanksha Srivastava
    • 1
  • Yogesh Mishra
    • 1
    Email author
  1. 1.Department of Botany, Centre of Advanced Study in Botany, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations