Genome Engineering in Rice: Applications, Advancements and Future Perspectives

  • Shalini Tiwari
  • Charu LataEmail author
Part of the Energy, Environment, and Sustainability book series (ENENSU)


Rice (Oryza sativa L.) is one of the essential cereal crops for the majority of the world’s population. However, we need to ensure a continuous supply and enhanced the productivity of this crop in the purview of global climate change and increasing world population. Several crop improvement strategies, including genetic engineering and molecular breeding, have been routinely used to develop varieties superior in stress tolerance and yield. However, each one of them has limitations. Genome engineering or genome editing using targeted nucleases is recently being deployed as a key strategy to improve rice and other crops which promises a significant improvement in yield without the requirement of additional agricultural land in the future. Targeted genome editing using artificial nucleases has largely revolutionized the field of crops’ genome modification. Several studies recently used Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) to successfully modulate genes in a precise and predictable manner in plants for gene function studies and crop improvement programmes. These techniques open up new prospects to develop improved plant lines by adding important traits or by removing undesirable traits. The ability of these technologies to perform targeted and efficient modifications in genome sequence will undoubtedly lead to novel developments in plants, including crop plants. Moreover, due to the non-insertion of foreign DNA, this technique is socially acceptable and may help to alleviate regulatory issues associated with genetically modified plants. In this review, we describe the recent advancement in the CRISPR/Cas9 system and also highlight the strengths and weaknesses of this technology in comparison to the other two well-established genome editing platforms (ZFNs and TALENs). We have also discussed the small size new protein named CasX, its DNA cleavage characteristics, and its advantages over other CRISPR-Cas genome-editing enzymes. These technologies are mostly used for substitution of targeted gene fragments and insertion of exogenous DNA sequences into specific genomic location in crop plants that offer great potential for genetic improvement and breeding of rice.


CRISPR Crop improvement Genome editing Nucleases Rice 



CL acknowledges “Early Career Research Award (ECRA)” by Science & Engineering Research Board (SERB), Government of India [Grant No. ECR/2017/001593]. Authors are also thankful to the Director, CSIR—National Botanical Research Institute, Lucknow, India, for providing facilities and support for the study.


  1. Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20(3):145–149PubMedCrossRefGoogle Scholar
  2. Baltes NJ, Voytas DF (2015) Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33(2):120–131PubMedCrossRefGoogle Scholar
  3. Blanvillain-Baufumé S, Reschke M, Solé M, Auguy F, Doucoure H, Szurek B, Meynard D, Portefaix M, Cunnac S, Guiderdoni E, Boch J (2017) Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET 14‐inducing TAL effectors. Plant Biotechnol J 15(3):306–317PubMedCrossRefGoogle Scholar
  4. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436PubMedCrossRefGoogle Scholar
  5. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512PubMedCrossRefGoogle Scholar
  6. Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas BC, Doudna JA, Banfield JF (2017) New CRISPR—Cas systems from uncultivated microbes. Nature 542(7640):237PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cantos C, Francisco P, Trijatmiko KR, Slamet-Loedin I, Chadha-Mohanty PK (2014) Identification of “safe harbor” loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Front Plant Sci 5:302PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chen L, Magliano DJ, Zimmet PZ (2012) The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat Rev Endocrinol 8:228–236. Scholar
  9. Duan YB, Li J, Qin RY, Xu RF, Li H, Yang YC, Ma H, Li L, Wei PC, Yang JB (2016) Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Mol Biol 90(1–2):49–62PubMedCrossRefGoogle Scholar
  10. Endo M, Mikami M, Toki S (2015) Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol 56(1):41–47PubMedCrossRefGoogle Scholar
  11. Endo M, Mikami M, Toki S (2016) Biallelic gene targeting in rice. Plant Physiol 170(2):667–677PubMedCrossRefGoogle Scholar
  12. Endo M, Mikami M, Endo A, Kaya H, Itoh T, Nishimasu H, Nureki O, Toki S (2019) Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM. Nat Plants 5(1):14PubMedCrossRefGoogle Scholar
  13. Hu X, Wang C, Fu Y, Liu Q, Jiao X, Wang K (2016) Expanding the range of CRISPR/Cas9 genome editing in rice. Mol Plant 9(6):943–945PubMedCrossRefGoogle Scholar
  14. Jain M (2015) Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Front Plant Sci 6:375PubMedPubMedCentralCrossRefGoogle Scholar
  15. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41(20):e188–e188PubMedPubMedCentralCrossRefGoogle Scholar
  16. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821PubMedPubMedCentralCrossRefGoogle Scholar
  17. Jung YJ, Nogoy FM, Lee SK, Cho YG, Kang KK (2018) Application of ZFN for site directed mutagenesis of rice SSIVa gene. Biotechnol Bioprocess Eng 23(1):108–115CrossRefGoogle Scholar
  18. Kamburova VS, Nikitina EV, Shermatov SE, Buriev ZT, Kumpatla SP, Emani C, Abdurakhmonov IY (2017) Genome editing in plants: an overview of tools and applications. Int J AgroGoogle Scholar
  19. Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V (2019) A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565(7737):91PubMedCrossRefGoogle Scholar
  20. Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78PubMedPubMedCentralCrossRefGoogle Scholar
  21. Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (2010) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39(1):359–372PubMedPubMedCentralCrossRefGoogle Scholar
  22. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30(5):390PubMedCrossRefGoogle Scholar
  23. Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C (2016a) Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nature plants 2(10):16139PubMedCrossRefGoogle Scholar
  24. Li T, Liu B, Chen CY, Yang B (2016b) TALEN-mediated homologous recombination produces site-directed DNA base change and herbicide-resistant rice. J Genet Genomics 43(5):297–305PubMedCrossRefGoogle Scholar
  25. Li M, Li X, Zhou Z, Wu P, Fang M, Pan X et al (2016c) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci 7:377. Scholar
  26. Li Q, Zhang D, Chen M, Liang W, Wei J, Qi Y, Yuan Z (2016d) Development of japonica photo-sensitive genic male sterile rice lines by editing carbon starved anther using CRISPR/Cas9. J Genet Genomics (Yi chuan xue bao) 43(6):415CrossRefGoogle Scholar
  27. Li X, Zhou W, Ren Y, Tian X, Lv T, Wang Z, Fang J, Chu C, Yang J, Bu Q (2017) High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. J Genet Genomics (Yi chuan xue bao) 44(3):175CrossRefGoogle Scholar
  28. Li P, Zhang L, Mo X, Ji H, Bian H, Hu Y, Majid T, Long J, Pang H, Tao Y, Ma J (2019) Aquaporin PIP1; 3 of rice and harpin Hpa1 of bacterial blight pathogen cooperate in a type III effector translocation. J Exp Bot 70(12):3057–3073PubMedPubMedCentralCrossRefGoogle Scholar
  29. Liu D, Chen X, Liu J, Ye J, Guo Z (2012) The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot 63(10):3899–3911PubMedPubMedCentralCrossRefGoogle Scholar
  30. Liu L, Zheng C, Kuang B, Wei L, Yan L, Wang T (2016a) Receptor-like kinase RUPO interacts with potassium transporters to regulate pollen tube growth and integrity in rice. PLoS Genet 12(7):e1006085PubMedPubMedCentralCrossRefGoogle Scholar
  31. Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R (2016b) Editing DNA methylation in the mammalian genome. Cell 167(1):233–247PubMedPubMedCentralCrossRefGoogle Scholar
  32. Liu Y, Xu Y, Ling S, Liu S, Yao J (2017) Anther-preferential expressing gene PMR is essential for the mitosis of pollen development in rice. Plant Cell Rep 36(6):919–931PubMedCrossRefGoogle Scholar
  33. Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KL, Chuck J, Tan D, Knott GJ, Harrington LB, Al-Shayeb B (2019) CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566(7743):218PubMedPubMedCentralCrossRefGoogle Scholar
  34. Lu Y, Zhu JK (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10(3):523–525PubMedCrossRefGoogle Scholar
  35. Ma L, Zhu F, Li Z, Zhang J, Li X, Dong J, Wang T (2015a) TALEN-based mutagenesis of lipoxygenase LOX3 enhances the storage tolerance of rice (Oryza sativa) seeds. PLoS ONE 10(12):e0143877PubMedPubMedCentralCrossRefGoogle Scholar
  36. Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y (2015b) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284PubMedCrossRefGoogle Scholar
  37. Ma L, Zhang D, Miao Q, Yang J, Xuan Y, Hu Y (2017) Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling. Plant Cell Physiol 58(5):863–873PubMedCrossRefGoogle Scholar
  38. Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, Čermák T, Voytas DF, Choi IR, Chadha-Mohanty P (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to rice tungro spherical virus. Plant Biotechnol J 16(11):1918–1927PubMedPubMedCentralCrossRefGoogle Scholar
  39. Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci 108(6):2623–2628PubMedCrossRefGoogle Scholar
  40. Malzahn A, Lowder L, Qi Y (2017) Plant genome editing with TALEN and CRISPR. Cell Biosci 7(1):21PubMedPubMedCentralCrossRefGoogle Scholar
  41. Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6(6):2008–2011PubMedPubMedCentralCrossRefGoogle Scholar
  42. Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23(10):1233PubMedPubMedCentralCrossRefGoogle Scholar
  43. Miao C, Xiao L, Hua K, Zoua C, Zhao Y, Bressanb RA et al (2018) Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc Natl Acad Sci USA 115:6058–6063. Scholar
  44. Mikami M, Toki S, Endo M (2015) Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice. Plant Cell Rep 34(10):1807–1815PubMedCrossRefGoogle Scholar
  45. Mikami M, Toki S, Endo M (2016) Precision targeted mutagenesis via Cas9 paired nickases in rice. Plant Cell Physiol 57(5):1058–1068PubMedPubMedCentralCrossRefGoogle Scholar
  46. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143PubMedCrossRefGoogle Scholar
  47. Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: recent advances, challenges, and future implications. Front Plant Sci 9Google Scholar
  48. Moore M, Klug A, Choo Y (2001) Improved DNA binding specificity from polyzinc finger peptides by using strings of two-finger units. Proc Natl Acad Sci 98(4):1437–1441PubMedCrossRefGoogle Scholar
  49. Nishizawa-Yokoi A, Cermak T, Hoshino T, Sugimoto K, Saika H, Mori A, Osakabe K, Hamada M, Katayose Y, Starker C, Voytas DF (2016) A defect in DNA Ligase4 enhances the frequency of TALEN-mediated targeted mutagenesis in rice. Plant Physiol 170(2):653–666PubMedCrossRefGoogle Scholar
  50. Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K, Osakabe K (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6:26685PubMedPubMedCentralCrossRefGoogle Scholar
  51. Pathak B, Zhao S, Manoharan M, Srivastava V (2019) Dual-targeting by CRISPR/Cas9 leads to efficient point mutagenesis but only rare targeted deletions in the rice genome. 3 Biotech 9(4):158PubMedPubMedCentralCrossRefGoogle Scholar
  52. Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Biol-Plant 51(1):1–8PubMedPubMedCentralCrossRefGoogle Scholar
  53. Saika H, Mori A, Endo M, Toki S (2018) Targeted deletion of rice retrotransposon Tos17 via CRISPR/Cas9. Plant Cell Rep 1–4Google Scholar
  54. Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, Zhang K, Liu J, Voytas DF, Zheng X, Zhang Y (2013a) Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant 6(4):1365–1368PubMedPubMedCentralCrossRefGoogle Scholar
  55. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013b) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686PubMedCrossRefGoogle Scholar
  56. Shan Q, Zhang Y, Chen K, Zhang K, Gao C (2015) Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J 13(6):791–800PubMedCrossRefGoogle Scholar
  57. Shukla V, Gupta M, Urnov F, Guschin D, Jan M, Bundock P (2013) Targeted modification of malate dehydrogenase. WO Patent Publication Number: WO 2013166315 A1Google Scholar
  58. Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9(4):628–631PubMedCrossRefGoogle Scholar
  59. Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X et al (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298. Scholar
  60. Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945PubMedPubMedCentralCrossRefGoogle Scholar
  61. Tiwari S, Lata C (2018) Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Front Plant Sci 9:452PubMedPubMedCentralCrossRefGoogle Scholar
  62. Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117PubMedCrossRefGoogle Scholar
  63. Tiwari S, Lata C, Singh Chauhan P, Prasad V, Prasad M (2017a) A functional genomic perspective on drought signalling and its crosstalk with phytohormone-mediated signalling pathways in plants. Curr Genomics 18(6):469–482PubMedPubMedCentralCrossRefGoogle Scholar
  64. Tiwari S, Prasad V, Chauhan PS, Lata C (2017b) Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci 8:1510PubMedPubMedCentralCrossRefGoogle Scholar
  65. Tong Y, Weber T, Lee SY (2019) CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod RepGoogle Scholar
  66. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636PubMedCrossRefGoogle Scholar
  67. Van Der Oost J, Westra ER, Jackson RN, Wiedenheft B (2014) Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol 12(7):479PubMedPubMedCentralCrossRefGoogle Scholar
  68. Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350PubMedCrossRefGoogle Scholar
  69. Wang M, Liu Y, Zhang C, Liu J, Liu X, Wang L, Wang W, Chen H, Wei C, Ye X, Li X (2015a) Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations. PLoS ONE 10(4):e0122755PubMedPubMedCentralCrossRefGoogle Scholar
  70. Wang C, Shen L, Fu Y, Yan C, Wang K (2015b) A simple CRISPR/Cas9 system for multiplex genome editing in rice. J Genet Genomics 42(12):703–706PubMedCrossRefGoogle Scholar
  71. Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11(4):e0154027PubMedPubMedCentralCrossRefGoogle Scholar
  72. Wang M, Lu Y, Botella JR, Mao Y, Hua K, Zhu JK (2017) Gene targeting by homology-directed repair in rice using a gemini virus-based CRISPR/Cas9 system. Mol Plant 10(7):1007–1010PubMedCrossRefGoogle Scholar
  73. Wang J, Meng X, Hu X, Sun T, Li J, Wang K, Yu H (2019) xCas9 expands the scope of genome editing with reduced efficiency in rice. Plant Biotechnol J 17(4):709PubMedPubMedCentralCrossRefGoogle Scholar
  74. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331PubMedPubMedCentralCrossRefGoogle Scholar
  75. Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33(11):1162PubMedCrossRefGoogle Scholar
  76. Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci 112(11):3570–3575PubMedCrossRefGoogle Scholar
  77. Xie E, Li Y, Tang D, Lv Y, Shen Y, Cheng Z (2019) A strategy for generating rice apomixis by gene editing. J Integr Plant Biol 61(8):911–916PubMedCrossRefGoogle Scholar
  78. Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice 7(1):5PubMedPubMedCentralCrossRefGoogle Scholar
  79. Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC, Ma H, Li L, Wei PC, Yang JB (2015) Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep 5:11491PubMedPubMedCentralCrossRefGoogle Scholar
  80. Yamauchi T, Yoshioka M, Fukazawa A, Mori H, Nishizawa NK, Tsutsumi N, Yoshioka H, Nakazono M (2017) An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions. Plant Cell 29(4):775–790PubMedPubMedCentralCrossRefGoogle Scholar
  81. Yang J, Luo D, Yang B, Frommer WB, Eom JS (2018) SWEET 11 and 15 as key players in seed filling in rice. New Phytol 218(2):604–615PubMedCrossRefGoogle Scholar
  82. Yin X, Biswal AK, Dionora J, Perdigon KM, Balahadia CP, Mazumdar S, Chater C, Lin HC, Coe RA, Kretzschmar T et al (2017) CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep. Scholar
  83. Yuan J, Chen S, Jiao W, Wang L, Wang L, Ye W, Lu J, Hong D, You S, Cheng Z, Yang DL (2017) Both maternally and paternally imprinted genes regulate seed development in rice. New Phytol 216(2):373–387PubMedCrossRefGoogle Scholar
  84. Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12(6):797–807PubMedCrossRefGoogle Scholar
  85. Zhang H, Gou F, Zhang J, Liu W, Li Q, Mao Y, Botella JR, Zhu JK (2016) TALEN-mediated targeted mutagenesis produces a large variety of heritable mutations in rice. Plant Biotechnol J 14(1):186–194PubMedCrossRefGoogle Scholar
  86. Zheng X, Yang S, Zhang D, Zhong Z, Tang X, Deng K, Zhou J, Qi Y, Zhang Y (2016) Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism. Plant Cell Rep 35(7):1545–1554PubMedCrossRefGoogle Scholar
  87. Zhong Y, Wang Y, Guo J, Zhu X, Shi J, He Q, Liu Y, Wu Y, Zhang L, Lv Q, Mao C (2018) Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2. New Phytol 219(1):135–148PubMedCrossRefGoogle Scholar
  88. Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42(17):10903–10914PubMedPubMedCentralCrossRefGoogle Scholar
  89. Zhou H, He M, Li J, Chen L, Huang Z, Zheng S, Zhu L, Ni E, Jiang D, Zhao B, Zhuang C (2016) Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci Rep 6:37395PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Council of Scientific and Industrial Research—National Botanical Research Institute (CSIR-NBRI)LucknowIndia
  2. 2.CSIR—National Institute of Science Communication and Information ResourcesNew DelhiIndia

Personalised recommendations