Advertisement

Introduction

  • Daisuke OguraEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we will introduce some basics of superconductivity related to the present study. Firstly, we briefly mention superconductivity and classification of it into conventional and unconventional superconductivity. We also describe some basics of two material classes of high superconducting transition temperatures, the cuprate and iron-based superconductors, which are considered to be typical families of unconventional superconductors.

Keywords

Superconductivity Cuprate superconductors Iron-based superconductors. 

References

  1. 1.
    Onnes HK (1911) Phys Lab Univ Leiden 119, 120, 133Google Scholar
  2. 2.
    Drozdov A, Eremets M, Troyan I, Ksenofontov V, Shylin S (2015) Nature 525:73Google Scholar
  3. 3.
    Drozdov A et al (2018). arXiv:1808.07039
  4. 4.
    Somayazulu M et al (2018). arXiv:1808.07695
  5. 5.
    Bardeen J, Cooper LN, Schrieffer JR (1957) Phys Rev 108:1175Google Scholar
  6. 6.
    Fournier P (2015) Phys C: Supercond Appl 514:314. Superconducting Materials: Conventional, Unconventional and UndeterminedGoogle Scholar
  7. 7.
    Chu C, Deng L, Lv B (2015) Phys C: Supercond Appl 514:290. Superconducting Materials: Conventional, Unconventional and UndeterminedGoogle Scholar
  8. 8.
    Bednorz JG, Müller KA (1986) Zeitschrift für Physik B Condensed Matter 64:189Google Scholar
  9. 9.
    Wu MK et al (1987) Phys Rev Lett 58:908Google Scholar
  10. 10.
    Schilling A, Cantoni M, Guo J, Ott H (1993) Nature 363:56Google Scholar
  11. 11.
    Momma K, Izumi F (2011) J Appl Crystallogr 44:1272Google Scholar
  12. 12.
    Fukuoka A et al (1997) Phys Rev B 55:6612Google Scholar
  13. 13.
    Mukuda H, Shimizu S, Iyo A, Kitaoka Y (2011) J Phys Soc Jpn 81:011008Google Scholar
  14. 14.
    For some multilayered cases, the situation is somewhat more complicated. For example, an experimental study for a trilayered Bi\(_2\)Sr\(_2\)Ca\(_2\)Cu\(_3\)O\(_{10}\), Fujii et al (2002) Phys Rev B 66:024507, reported that \(T_c\) exhibits an almost constant value against hole doping in the over-doped region, which implies that the doping rate for inequivalent layers is different with each otherGoogle Scholar
  15. 15.
    Yoshida T et al (2003) Phys Rev Lett 91:027001Google Scholar
  16. 16.
    Yoshida T et al (2009) Phys. Rev. Lett. 103:037004ADSCrossRefGoogle Scholar
  17. 17.
    Takigawa M et al (1991) Phys Rev B 43:247Google Scholar
  18. 18.
    Sato T et al (2002) Phys Rev Lett 89:067005Google Scholar
  19. 19.
    Vishik IM et al (2010) New J Phys 12:105008Google Scholar
  20. 20.
    Ando Y, Komiya S, Segawa K, Ono S, Kurita Y (2004) Phys Rev Lett 93:267001Google Scholar
  21. 21.
    Naqib S, Uddin MB, Cole J (2011) Phys C: Supercond 471:1598Google Scholar
  22. 22.
    Yamamoto A, Hu W-Z, Tajima S (2000) Phys Rev B 63:024504Google Scholar
  23. 23.
    Tajima S et al (1997) Phys Rev B 55:6051Google Scholar
  24. 24.
    Sato T et al (2000) Phys C: Supercond 341:815Google Scholar
  25. 25.
    Fujimori A et al (2000) Phys C: Supercond 341:2067Google Scholar
  26. 26.
    Dipasupil R, Oda M, Momono N, Ido M (2002) J Phys Soc Jpn 71:1535Google Scholar
  27. 27.
    Torchinsky DH, Mahmood F, Bollinger AT, Božović I, Gedik N (2013) Nat Mater 12:387Google Scholar
  28. 28.
    Ishida K et al (1991) Phys C: Supercond 179:29Google Scholar
  29. 29.
    Imai T, Shimizu T, Yasuoka H, Ueda Y, Kosuge K (1988) J Phys Soc Jpn 57:2280Google Scholar
  30. 30.
    Hammel PC, Takigawa M, Heffner RH, Fisk Z, Ott KC (1989) Phys Rev Lett 63:1992Google Scholar
  31. 31.
    Hardy WN, Bonn DA, Morgan DC, Liang R, Zhang K (1993) Phys Rev Lett 70:3999Google Scholar
  32. 32.
    Shen Z-X et al (1993) Phys Rev Lett 70:1553Google Scholar
  33. 33.
    Ding H et al (1995) Phys Rev Lett 74:2784Google Scholar
  34. 34.
    Alff L et al (1997) Phys Rev B 55:R14757Google Scholar
  35. 35.
    Wollman DA, Van Harlingen DJ, Lee WC, Ginsberg DM, Leggett AJ (1993) Phys Rev Lett 71:2134Google Scholar
  36. 36.
    Tsuei C et al (1996) Phys C: Supercond 263:232Google Scholar
  37. 37.
    Mathai A, Gim Y, Black RC, Amar A, Wellstood FC (1995) Phys Rev Lett 74:4523Google Scholar
  38. 38.
    Iguchi I, Wen Z (1994) Phys Rev B 49:12388Google Scholar
  39. 39.
    Chaudhari P, Lin S-Y (1994) Phys Rev Lett 72:1084Google Scholar
  40. 40.
    Hosono H, Kuroki K (2015) Phys C: Supercond Appl 514:399. Superconducting Materials: Conventional, Unconventional and UndeterminedGoogle Scholar
  41. 41.
    Hirschfeld PJ, Korshunov MM, Mazin II (2011) Rep Progress Phys 74:124508Google Scholar
  42. 42.
    Kamihara Y et al (2006) J Am Chem Soc 128:10012Google Scholar
  43. 43.
    Kamihara Y, Watanabe T, Hirano M, Hosono H (2008) J Am Chem Soc 130:3296Google Scholar
  44. 44.
    Daghero D et al (2009) Phys Rev B 80:060502Google Scholar
  45. 45.
    Hashimoto K et al (2009) Phys Rev Lett 102:017002Google Scholar
  46. 46.
    Nakayama K et al (2009) EPL (Europhys Lett) 85:67002Google Scholar
  47. 47.
    Mazin II, Singh DJ, Johannes MD, Du MH (2008) Phys Rev Lett 101:057003Google Scholar
  48. 48.
    Kuroki K et al (2008) Phys Rev Lett 101:087004Google Scholar
  49. 49.
    Kontani H, Onari S (2010) Phys Rev Lett 104:157001Google Scholar
  50. 50.
    Onari S, Kontani H (2012) Phys Rev Lett 109:137001Google Scholar
  51. 51.
    Guo J et al (2010) Phys Rev B 82:180520Google Scholar
  52. 52.
    Qian T et al (2011) Phys Rev Lett 106:187001Google Scholar
  53. 53.
    Wang Q-Y et al (2012) Chin Phys Lett 29:037402Google Scholar
  54. 54.
    Tan S et al (2013) Nat Mater 12:634Google Scholar
  55. 55.
    Miao H et al (2015) Nat Commun 6:6056Google Scholar
  56. 56.
    Niu XH et al (2015) Phys Rev B 92:060504Google Scholar
  57. 57.
    Total absence of the hole Fermi surface in K\(_x\)Fe\(_{2-y}\)Se\(_2\) is still controversial; in fact, a recent ARPES study, Sunagawa et al (2016) J Phys Soc Jpn 85:073704, observes a “hidden” hole band, which was detected by taking special care of the photon energy and the polarization, likely to be intersecting the Fermi levelGoogle Scholar
  58. 58.
    Wang F et al (2011) EPL (Europhys Lett) 93:57003Google Scholar
  59. 59.
    Bang Y (2014) New J Phys 16:023029Google Scholar
  60. 60.
    Chen X, Maiti S, Linscheid A, Hirschfeld PJ (2015) Phys Rev B 92:224514Google Scholar
  61. 61.
    Bang Y (2016) New J Phys 18:113054Google Scholar
  62. 62.
    Linscheid A, Maiti S, Wang Y, Johnston S, Hirschfeld PJ (2016) Phys Rev Lett 117:077003Google Scholar
  63. 63.
    Mishra V, Scalapino DJ, Maier TA (2016) Sci Rep 6:32078Google Scholar
  64. 64.
    Kuroki K, Higashida T, Arita R (2005) Phys Rev B 72:212509Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsOsaka UniversityOsakaJapan

Personalised recommendations