Advertisement

Shapley Value Method for Benefit Distribution of Technology Innovation in Construction Industry with Intuitionistic Fuzzy Coalition

  • Ting HanEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1082)

Abstract

The formation of the technology innovation coalition of the construction industry can give full play to the resource advantages of all participants, innovate technologies, save cost, improve construction quality, and achieve a multi-win situation. The key to the success of the coalition is to establish a fair and efficient mechanism of benefit distribution. Firstly, the forming mechanism and value creation mechanism is analyzed. Then the benefit distribution under the condition that members have certain degree of participation and certain degree of non-participation in the coalition is discussed, assuming that the members are fully aware of the expected benefit of different cooperation strategies before the cooperation. The essence is to solve cooperative game with intuitionistic fuzzy coalition. In this paper, Shapley value for intuitionistic fuzzy cooperative game is proposed by taking use of intuitionistic fuzzy set theory, Choquet integrals and continuous ordered weighted average operator. It’s also proofed that the defined Shapley value satisfies three axioms. Finally, the effectiveness and rationality of Shapley is illustrated by a numerical example.

Keywords

Intuitionistic Fuzzy coalition Technology innovation in construction industry Benefit distribution Shapley value method 

References

  1. 1.
    Wang, Q.X., Zheng, L., Huang, D.A.: Research on innovation in construction industry. Ind. Strateg. 9, 20–30 (2003).  https://doi.org/10.3969/j.issn.0577-7429.2003.09.011CrossRefGoogle Scholar
  2. 2.
    Fruin, M., Lin, R., Zhang, H., et al.: Alliance network and innovation: evidence from China’s third generation mobile communications industry. J. Asia Bus. Stud. 6(2), 197–222 (2012).  https://doi.org/10.1108/15587891211254407CrossRefGoogle Scholar
  3. 3.
    Kangari, R., Miyatake, Y.: Developing and managing innovative construction technologies in Japan. J. Constr. Eng. Manage. 123(1), 72–78 (1997).  https://doi.org/10.1061/(asce)0733-9364(1997)123:1(72)CrossRefGoogle Scholar
  4. 4.
    Arditi, D., Kale, S., Tangkar, M.: Innovation in construction equipment and its flow into the construction Industry. J. Constr. Eng. Manage. 123(4), 371–378 (1997).  https://doi.org/10.1061/(asce)0733-9364(1997)123:4(371)CrossRefGoogle Scholar
  5. 5.
    Pries, F., Janszen, F.: Innovation in the construction industry: the dominant role of the environment. Constr. Manage. Econ. 13(1), 43–51 (1995).  https://doi.org/10.1080/01446199500000006CrossRefGoogle Scholar
  6. 6.
    Eriksson, P.E., Laan, A.: Procurement effects on trust and control in client-contractor relationships. Eng. Constr. Archit. Manage. 14(4), 387–399 (2016).  https://doi.org/10.1016/j.ijpe.2012.01.015CrossRefGoogle Scholar
  7. 7.
    Horta, I.M., Camanho, A.S., Costa, J.M.D.: Performance assessment of construction companies: a study of factors promoting financial soundness and innovation in the industry. Int. J. Prod. Econ. 137(1), 84–93 (2012).  https://doi.org/10.1016/j.ijpe.2012.01.015CrossRefGoogle Scholar
  8. 8.
    Šuman, N., El-Masr, M.S.: The integrated approach for introducing innovation in construction industry. Organ. Tech. Man. Cons. 5(2), 834–843 (2013).  https://doi.org/10.5592/otmcj.2013.2.2CrossRefGoogle Scholar
  9. 9.
    Blayse, A.M., Manley, K.: Key influences on construction innovation. Constr. Innov. 4(3), 143–154 (2004).  https://doi.org/10.1191/1471417504ci073oaCrossRefGoogle Scholar
  10. 10.
    Jahn, H., Zimmermann, M., Fischer, M., et al.: Performance evaluation as an influence factor for the determination of profit shares of competence cells in non-hierarchical regional production networks. Robot. CIM-INT Manuf. 22(5–6), 526–535 (2006).  https://doi.org/10.1016/j.rcim.2005.11.011CrossRefGoogle Scholar
  11. 11.
    Chauhan, S.S., Proth, J.M.: Analysis of a supply chain partnership with revenue sharing. Int. J. Prod. Econ. 97(1), 44–51 (2005).  https://doi.org/10.1016/j.ijpe.2004.05.006CrossRefGoogle Scholar
  12. 12.
    Canakoglu, E., Bilgic, T.: Analysis of a two-stage telecommunication supply chain with technology dependent demand. Eur. J. Oper. Res. 177(2), 995–1012 (2006).  https://doi.org/10.1016/j.ejor.2006.01.006CrossRefzbMATHGoogle Scholar
  13. 13.
    Jia, N.X., Yokoyama, R.: Profit allocation of independent power producers based on cooperative Game theory. Int. J. Elec. Power. 25(8), 633–641 (2003).  https://doi.org/10.1016/s0142-0615(02)00180-1CrossRefGoogle Scholar
  14. 14.
    Sakawa, M., Nishizaki, I., Uemura, Y.: Fuzzy programming and profit and cost allocation for a production and transportation problem. Eur. J. Oper. Res. 131(1), 1–15 (2001).  https://doi.org/10.1016/s0377-2217(00)00104-1MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zheng, W.J., Zhang, X.M., et al.: Research of profit distributing mechanism of virtual enterprises. J. Ind. Eng. Manage. 15(1), 26–28 (2001).  https://doi.org/10.3969/j.issn.1004-6062.2001.01.008CrossRefGoogle Scholar
  16. 16.
    Feng, W.D., Chen, J.: Study on the proportion making for profit/risk allocation within virtual enterprises. Syst. Eng. Theor. Pract. 22(4), 45–49 (2002).  https://doi.org/10.3321/j.issn:1000-6788.2002.04.008CrossRefGoogle Scholar
  17. 17.
    Dai, J.H., Xue, H.X.: The strategy of profit allocation among partners in dynamic alliance based on the Shapley value. China J. Manage. Sci. 12(4), 33–36 (2004).  https://doi.org/10.3321/j.issn:1003-207x.2004.04.007CrossRefGoogle Scholar
  18. 18.
    Liao, C.L., Fan, Z.J., Tan, A.M.: Research on secondary profit distribution mechanism of virtual enterprises. Sci. Technol. Prog. Policy. 4, 138–140 (2005).  https://doi.org/10.3969/j.issn.1000-7695.2005.04.045CrossRefGoogle Scholar
  19. 19.
    Sang, X.M., Li, J.: Profit allocation in small and medium-sized enterprises financing alliance based on interval Shapley Value. Math. Pract. Theory 40(21), 93–98 (2010)MathSciNetGoogle Scholar
  20. 20.
    Han, X.L., Zhang, Q.P.: Cooperative game analysis of knowledge creation and benefit distribution among enterprises. Sci. Technol. Prog. Policy 28(9), 85–87 (2011).  https://doi.org/10.3969/j.issn.1001-7348.2011.09.019CrossRefGoogle Scholar
  21. 21.
    Chen, M., Yu, J., Zou, H.: Research on profit distribution of supply chain enterprises based on orthogonal projection method. J. Changsha Univ. 25(5), 99–101 (2011).  https://doi.org/10.3969/j.issn.1008-4681.2011.05.034CrossRefGoogle Scholar
  22. 22.
    Chen, W., Zhang, Q.: Profit distribution method of enterprise alliance based on fuzzy alliance cooperative game. Trans. Beijing Inst. Technol. 57(8), 735–739 (2007).  https://doi.org/10.3969/j.issn.1001-0645.2007.08.018CrossRefGoogle Scholar
  23. 23.
    Tan, C.Q.: Shapley value for n-persons games with interval fuzzy coalition based on Choquet extension. J. Syst. Eng. 25(4), 451–458 (2010)zbMATHGoogle Scholar
  24. 24.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986).  https://doi.org/10.1016/S0165-0114(86)80034-3CrossRefzbMATHGoogle Scholar
  25. 25.
    Atanassov, K.T.: Intuitionistic Fuzzy Sets. Springer, Heidelberg (1999).  https://doi.org/10.1007/978-3-7908-1870-3CrossRefzbMATHGoogle Scholar
  26. 26.
    Li, D.F., Wang, Y.C., Liu, S., et al.: Fractional programming methodology for multi-attribute group decision-making using IFS. Appl. Soft Comput. 9(1), 219–225 (2009).  https://doi.org/10.1016/j.asoc.2008.04.006CrossRefGoogle Scholar
  27. 27.
    Li, F.: TOPSIS-based nonlinear-programming methodology for multiattribute decision making with interval-valued intuitionistic fuzzy sets. IEEE Trans. Fuzzy Syst. 18(2), 299–311 (2010).  https://doi.org/10.1109/TFUZZ.2010.2041009CrossRefGoogle Scholar
  28. 28.
    Li, D.F., Shan, F., Cheng, C.T.: On properties of four IFS operators. Fuzzy Sets Syst. 154(1), 151–155 (2005).  https://doi.org/10.1016/j.fss.2005.03.004MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Xu, Y.J., Sun, T., Li, D.F.: Intuitionistic fuzzy prioritized OWA operator and its application in multi-criteria decision-making problem. Control Decis. 26(1), 129–132 (2011).  https://doi.org/10.1111/j.1759-6831.2010.00112.xMathSciNetCrossRefGoogle Scholar
  30. 30.
    Xu, X.Y., Huang, X.Y., Zhao, Y., Huang, Y.: Fault diagnosis with empirical model decomposition and intuitionistic fuzzy reasoning neural networks. J. Chongqing Univ. Technol. (Nat. Sci. Ed.) 24(4), 91–96 (2010).  https://doi.org/10.3969/j.issn.1674-8425-b.2010.04.018
  31. 31.
    Li, D.F., Nan, J.X.: A nonlinear programming approach to matrix games with payoffs of Atanassov’s intuitionsistic fuzzy sets. Int. J. Uncertain. Fuzziness 17(04), 585–607 (2009).  https://doi.org/10.1142/S0218488509006157CrossRefzbMATHGoogle Scholar
  32. 32.
    Li, D.F.: Mathematical-programming approach to matrix games with payoffs represented by Atanassov’s interval-valued intuitionistic fuzzy sets. IEEE Trans. Fuzzy Syst. 18(6), 1112–1128 (2011).  https://doi.org/10.1109/TFUZZ.2010.2065812CrossRefGoogle Scholar
  33. 33.
    Nan, J.X., Li, D.F., Zhang, M.J.: A lexicographic method for matrix Games with payoffs of triangular intuitionistic fuzzy numbers. Int. J. Comput. Int. Syst. 3(3), 280–289 (2010).  https://doi.org/10.1080/18756891.2010.9727699CrossRefGoogle Scholar
  34. 34.
    Nayak, P.K., Pal, M.: Bi-matrix games with intuitionistic fuzzy goals. Iran. J. Fuzzy Syst. 7(1), 65–79 (2010).  https://doi.org/10.3934/ipi.2010.4.191MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Angelov, P.P.: Optimization in an intuitionistic fuzzy environment. Fuzzy Sets Syst. 86(3), 299–306 (1997).  https://doi.org/10.1016/s0165-0114(96)00009-7MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Li, D.F.: Intuitionistic Fuzzy Set Decision and Game Analysis Methodologies. National Defense Industry Press, Beijing (2012)Google Scholar
  37. 37.
    Han, L.Y., Wang, P.Z.: Applied Fuzzy Mathematics. Capital University of Economics and Business Press, Beijing (1998)Google Scholar
  38. 38.
    Sugeno, M.: Theory of fuzzy integral and its applications. Doctor, Tokyo Institute of Technology (1974)Google Scholar
  39. 39.
    Murofushi, T., Sugeno, M.: An interpretation of fuzzy measure and the Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets Syst. 29(1), 201–227 (1989).  https://doi.org/10.1016/0165-0114(89)90194-2MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Yang, R., Wang, Z., Heng, P.A., et al.: Fuzzy numbers and fuzzification of the Choquet integral. Fuzzy Sets Syst. 153(1), 95–113 (2005).  https://doi.org/10.1016/j.fss.2004.12.009MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Yager, R.R.: OWA aggregation over a continuous interval argument with application to decision making. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(5), 1952–1963 (2004).  https://doi.org/10.1109/tsmcb.2004.831154CrossRefGoogle Scholar
  42. 42.
    Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games II. Annals of Mathematics Studies, pp. 307–317. Princeton University Press, Princeton (1953)Google Scholar
  43. 43.
    Tsurumi, M., Tanino, T., Inuiguchi, M.: A Shapley function on a class of cooperative fuzzy games. Eur. J. Oper. Res. 129(3), 596–618 (2001).  https://doi.org/10.1016/S0377-2217(99)00471-3MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Fuzhou University of International Studies and TradeFuzhouPeople’s Republic of China

Personalised recommendations