Advertisement

Formal Modeling and Analysis of Probabilistic Real-Time Systems

  • Christian Nigro
  • Libero NigroEmail author
  • Paolo F. Sciammarella
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1041)

Abstract

This paper considers formal modeling and analysis of distributed timed and stochastic real-time systems. The approach is based on Stochastic Time Petri Nets (sTPN) which offer a readable yet powerful modeling language. sTPN are supported by special case tools which can ensure accuracy in the results by numerical methods and the enumeration of stochastic state classes. These techniques, though, can suffer of state explosion problems when facing large models. In this work, a reduction of sTPN onto the popular Uppaal model checkers is developed which permits both exhaustive non-deterministic analysis, which ignores stochastic aspects and it is useful for functional and temporal assessment of system behavior, and quantitative analysis through statistical model checking, useful for estimating by automated simulation runs probability measures of event occurrence. The paper provides the formal definition of sTPN and its embedding into Uppaal. A sensor network case study is used as a running example throughout the paper to demonstrate the practical applicability of the approach.

Keywords

Stochastic time petri nets Probabilistic real-time systems Timing constraints Model checking Statistical model checking Uppaal 

References

  1. 1.
    A. Jafari, E. Khamespanah, M. Sirjani, H. Hermanns, M. Cimini, PTRebeca: modeling and analysis of distributed and asynchronous systems. Sci. Comput. Program. 128, 22–50 (2016)CrossRefGoogle Scholar
  2. 2.
    L. Nigro, P.F. Sciammarella, Qualitative and quantitative model checking of distributed probabilistic timed actors. Simul. Model. Pract. Theory 87, 343–368 (2018)CrossRefGoogle Scholar
  3. 3.
    E. Vicario, L. Sassoli, L. Carnevali, Using stochastic state classes in quantitative evaluation of dense-time reactive systems. IEEE Trans. on Soft. Eng. 35(5), 703–719 (2009)CrossRefGoogle Scholar
  4. 4.
    L. Carnevali, L. Grassi, E. Vicario, State-density functions over DBM domains in the analysis of non-Markovian models. IEEE Trans. on SW Eng. 35(2):178–194 (2009)CrossRefGoogle Scholar
  5. 5.
    F. Cicirelli, C. Nigro, L. Nigro, Qualitative and quantitative evaluation of stochastic Time Petri Nets, in 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), (IEEE, 2015), pp. 763–772Google Scholar
  6. 6.
    G. Bucci, L. Carnevali, L. Ridi, E. Vicario, Oris: a tool for modeling, verification and evaluation of real-time systems. Int. J. on Software Tools for Technology Transfer 12, 391–403 (2010)CrossRefGoogle Scholar
  7. 7.
    Uppaal, on-line: www.uppaal.org
  8. 8.
    G. Behrmann, A. David, K.G. Larsen, A tutorial on Uppaal, in Formal Methods for the Design of Real-Time Systems, vol. 3185, ed. by M. Bernardo, F. Corradini Lecture Notes in Computer Science (Springer-Verlag, 2004), pp. 200–236Google Scholar
  9. 9.
    A. David, K.G. Larsen, A. Legay, M. Mikucionis, D.B. Poulsen, Uppaal SMC tutorial. Int. J. on Software Tools for Technology Transfer 17, 1–19 (2015).  https://doi.org/10.1007/s10009-014-0361-yCrossRefGoogle Scholar
  10. 10.
    Agha, A., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model. Comput. Simul. 28(1), 6:1–6:39 (2018). http://doi.acm.org/10.1145/3158668
  11. 11.
    T. Murata, Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  12. 12.
    P.M. Merlin, D.J. Farber, Recoverability of communication protocols: implications of a theoretical study. IEEE Trans. Commun. 24(9), 1036–1043 (1976)MathSciNetCrossRefGoogle Scholar
  13. 13.
    B. Berthomieu, M. Diaz, Modeling and verification of time dependent systems using Time Petri Nets. IEEE Trans. Soft. Eng. 17(3), 259–273 (1991)MathSciNetCrossRefGoogle Scholar
  14. 14.
    E.A. Lee, M. Sirjani, What good are models? in International Conference on Formal Aspects of Component Software, (Springer, Cham, 2018), pp. 3–31CrossRefGoogle Scholar
  15. 15.
    L. Carullo, A. Furfaro, L. Nigro, F. Pupo, Modelling and simulation of complex systems using TPN designer. Simul. Model. Pract. Theory 11(7-8), 503–532 (2003)CrossRefGoogle Scholar
  16. 16.
    C. Nigro, L. Nigro, P.F. Sciammarella, Modelling and analysis of multi-agent systems using UPPAAL SMC. Int. J. Simul. Process Model. 13(1), 73–87 (2018)CrossRefGoogle Scholar
  17. 17.
    G.D. Plotkin, A structural approach to operational semantics (1981)Google Scholar
  18. 18.
    M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, Modelling with generalized stochastic Petri nets (Wiley, 2004)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Christian Nigro
    • 1
  • Libero Nigro
    • 2
    Email author
  • Paolo F. Sciammarella
    • 2
  1. 1.Independent Computer ProfessionalRendeItaly
  2. 2.DIMESUniversity of CalabriaRendeItaly

Personalised recommendations