Advertisement

Regulation of Inflammasome by Autophagy

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1209)

Abstract

Inflammasome is a molecular platform that mediates the activation of caspases, maturation of interleukin-1 (IL-1) family members, and leads to inflammatory cell death called pyroptosis. It is vital for innate immune responses, providing protection against infectious agents, sterile environmental insults, and host cell damages. Aberrant activation of inflammasome is closely correlated with numerous hereditary and acquired inflammatory disorders. Therefore, a better understanding of how inflammasome is regulated may provide more promising therapeutics for controlling inflammasome-associated diseases. In recent years, it becomes apparent that autophagy, a cellular machinery essential for the recycling of intracellular components and maintenance of cellular homeostasis, acts as a key player in the activation and regulation of inflammasome, and ameliorates symptoms of inflammasome-related diseases. This review will discuss the recent insights into inflammasome activation and regulation mediated by autophagy.

Keywords

Inflammasome Autophagy Pyroptosis Autophagic degradation Inflammasome-related disorders 

References

  1. 1.
    Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20:319–325PubMedCrossRefGoogle Scholar
  2. 2.
    Battu S, Afroz S, Giddaluru J, Naz S, Huang W, Khumukcham SS, Khan RA, Bhat SY, Qureshi IA, Manavathi B et al (2018) Amino acid starvation sensing dampens IL-1beta production by activating riboclustering and autophagy. PLoS Biol 16:e2005317PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16:407–420PubMedCrossRefGoogle Scholar
  4. 4.
    Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, Jahn H, Planyavsky M, Bilban M, Colinge J, Bennett KL, Superti-Furga G (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10:266–272PubMedCrossRefGoogle Scholar
  5. 5.
    Chavarria-Smith J, Vance RE (2015) The NLRP1 inflammasomes. Immunol Rev 265:22–34PubMedCrossRefGoogle Scholar
  6. 6.
    Chen J, Chen ZJ (2018) PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564:71–76PubMedCrossRefGoogle Scholar
  7. 7.
    Cho MH, Cho K, Kang HJ, Jeon EY, Kim HS, Kwon HJ, Kim HM, Kim DH, Yoon SY (2014) Autophagy in microglia degrades extracellular beta-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy 10:1761–1775PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    D’Osualdo A, Weichenberger CX, Wagner RN, Godzik A, Wooley J, Reed JC (2011) CARD8 and NLRP1 undergo autoproteolytic processing through a ZU5-like domain. PLoS One 6:e27396PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Di A, Xiong S, Ye Z, Malireddi RKS, Kometani S, Zhong M, Mittal M, Hong Z, Kanneganti TD, Rehman J, Malik AB (2018) The TWIK2 potassium efflux channel in macrophages mediates NLRP3 inflammasome-induced inflammation. Immunity 49(56–65):e54Google Scholar
  10. 10.
    Du Y, Duan T, Feng Y, Liu Q, Lin M, Cui J, Wang RF (2018) LRRC25 inhibits type I IFN signaling by targeting ISG15-associated RIG-I for autophagic degradation. EMBO J 37:351–366PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Duncan JA, Canna SW (2018) The NLRC4 inflammasome. Immunol Rev 281:115–123PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Dupont N, Lacas-Gervais S, Bertout J, Paz I, Freche B, Van Nhieu GT, van der Goot FG, Sansonetti PJ, Lafont F (2009) Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. Cell Host Microbe 6:137–149PubMedCrossRefGoogle Scholar
  13. 13.
    Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, Flavell RA (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745–757PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–513PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Franchi L, Nunez G (2012) Immunology. Orchestrating inflammasomes. Science 337:1299–1300PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Gatica D, Lahiri V, Klionsky DJ (2018) Cargo recognition and degradation by selective autophagy. Nat Cell Biol 20:233–242PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Ge Y, Xu X, Liang Q, Xu Y, Huang M (2019) Alpha-Mangostin suppresses NLRP3 inflammasome activation via promoting autophagy in LPS-stimulated murine macrophages and protects against CLP-induced sepsis in mice. Inflamm Res: Off J Eur Histamine Res Soc … [et al.] 68:471–479PubMedCrossRefGoogle Scholar
  18. 18.
    Geng J, Liu J, Yuan X, Liu W, Guo W (2019) Andrographolide triggers autophagy-mediated inflammation inhibition and attenuates chronic unpredictable mild stress (CUMS)-induced depressive-like behavior in mice. Toxicol Appl Pharmacol 379:114688PubMedCrossRefGoogle Scholar
  19. 19.
    Georgakopoulos ND, Wells G, Campanella M (2017) The pharmacological regulation of cellular mitophagy. Nat Chem Biol 13:136–146PubMedCrossRefGoogle Scholar
  20. 20.
    Han X, Sun S, Sun Y, Song Q, Zhu J, Song N, Chen M, Sun T, Xia M, Ding J et al (2019) Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease. Autophagy 1–22Google Scholar
  21. 21.
    Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Houtman J, Freitag K, Gimber N, Schmoranzer J, Heppner FL, Jendrach M (2019) Beclin1-driven autophagy modulates the inflammatory response of microglia via NLRP3. EMBO J 38Google Scholar
  24. 24.
    Hu B, Jin C, Li HB, Tong J, Ouyang X, Cetinbas NM, Zhu S, Strowig T, Lam FC, Zhao C et al (2016) The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science 354:765–768PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hu Z, Zhou Q, Zhang C, Fan S, Cheng W, Zhao Y, Shao F, Wang HW, Sui SF, Chai J (2015) Structural and biochemical basis for induced self-propagation of NLRC4. Science 350:399–404PubMedCrossRefGoogle Scholar
  26. 26.
    Ives A, Nomura J, Martinon F, Roger T, LeRoy D, Miner JN, Simon G, Busso N, So A (2015) Xanthine oxidoreductase regulates macrophage IL1beta secretion upon NLRP3 inflammasome activation. Nat Commun 6:6555PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Jabir MS, Hopkins L, Ritchie ND, Ullah I, Bayes HK, Li D, Tourlomousis P, Lupton A, Puleston D, Simon AK et al (2015) Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy. Autophagy 11:166–182PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Jin T, Perry A, Jiang J, Smith P, Curry JA, Unterholzner L, Jiang Z, Horvath G, Rathinam VA, Johnstone RW et al (2012) Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 36:561–571PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kang R, Xie Y, Zeh HJ, Klionsky DJ, Tang D (2019) Mitochondrial quality control mediated by PINK1 and PRKN: links to iron metabolism and tumor immunity. Autophagy 15:172–173PubMedCrossRefGoogle Scholar
  30. 30.
    Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S, Otageri P, Chandran B (2011) IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 9:363–375PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Khare S, Dorfleutner A, Bryan NB, Yun C, Radian AD, de Almeida L, Rojanasakul Y, Stehlik C (2012) An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36:464–476PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kim MJ, Bae SH, Ryu JC, Kwon Y, Oh JH, Kwon J, Moon JS, Kim K, Miyawaki A, Lee MG et al (2016) SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 12:1272–1291PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lacey CA, Miao EA (2019) NLRP1—One NLR to guard them all. EMBO J 38:e102494Google Scholar
  35. 35.
    Li W, Li Y, Siraj S, Jin H, Fan Y, Yang X, Huang X, Wang X, Wang J, Liu L et al (2019) FUN14 domain-containing 1-mediated mitophagy suppresses hepatocarcinogenesis by inhibition of inflammasome activation in mice. Hepatology 69:604–621PubMedCrossRefGoogle Scholar
  36. 36.
    Liu T, Tang Q, Liu K, Xie W, Liu X, Wang H, Wang RF, Cui J (2016) TRIM11 suppresses AIM2 inflammasome by degrading AIM2 via p62-dependent selective autophagy. Cell Rep 16:1988–2002CrossRefGoogle Scholar
  37. 37.
    Liu W, Bai F, Wang H, Liang Y, Du X, Liu C, Cai D, Peng J, Zhong G, Liang X et al (2019) Tim-4 Inhibits NLRP3 inflammasome via the LKB1/AMPKalpha pathway in macrophages. J Immunol 203:990–1000Google Scholar
  38. 38.
    Ma S, Chen J, Feng J, Zhang R, Fan M, Han D, Li X, Li C, Ren J, Wang Y, Cao F (2018) Melatonin ameliorates the progression of atherosclerosis via mitophagy activation and NLRP3 inflammasome inhibition. Oxidative Med Celllo Longev 2018:9286458Google Scholar
  39. 39.
    Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Mehto S, Chauhan S, Jena KK, Chauhan NR, Nath P, Sahu R, Dhar K, Das SK, Chauhan S (2019) IRGM restrains NLRP3 inflammasome activation by mediating its SQSTM1/p62-dependent selective autophagy. Autophagy 15:1645–1647PubMedCrossRefGoogle Scholar
  41. 41.
    Mitchell PS, Sandstrom A, Vance RE (2019) The NLRP1 inflammasome: new mechanistic insights and unresolved mysteries. Curr Opin Immunol 60:37–45PubMedCrossRefGoogle Scholar
  42. 42.
    Murphy AJ, Kraakman MJ, Kammoun HL, Dragoljevic D, Lee MK, Lawlor KE, Wentworth JM, Vasanthakumar A, Gerlic M, Whitehead LW et al (2016) IL-18 production from the NLRP1 inflammasome prevents obesity and metabolic syndrome. Cell Metab 23:155–164PubMedCrossRefGoogle Scholar
  43. 43.
    O’Neill LA (2008) The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol Rev 226:10–18PubMedCrossRefGoogle Scholar
  44. 44.
    Oikonomou V, Moretti S, Renga G, Galosi C, Borghi M, Pariano M, Puccetti M, Palmerini CA, Amico L, Carotti A et al (2016) Noncanonical fungal autophagy inhibits inflammation in response to IFN-gamma via DAPK1. Cell Host Microbe 20:744–757PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Palikaras K, Lionaki E, Tavernarakis N (2018) Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 20:1013–1022PubMedCrossRefGoogle Scholar
  46. 46.
    Place DE, Kanneganti TD (2018) Recent advances in inflammasome biology. Curr Opin Immunol 50:32–38PubMedCrossRefGoogle Scholar
  47. 47.
    Poeck H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M, Hannesschlager N, Schlee M, Rothenfusser S, Barchet W et al (2010) Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol 11:63–69PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pu Q, Gan C, Li R, Li Y, Tan S, Li X, Wei Y, Lan L, Deng X, Liang H et al (2017) Atg7 deficiency intensifies inflammasome activation and pyroptosis in pseudomonas sepsis. J Immunol 198:3205–3213PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Qu X, Gao H, Tao L, Zhang Y, Zhai J, Sun J, Song Y, Zhang S (2019) Astragaloside IV protects against cisplatin-induced liver and kidney injury via autophagy-mediated inhibition of NLRP3 in rats. J Toxicol Sci 44:167–175PubMedCrossRefGoogle Scholar
  50. 50.
    Ravindran R, Loebbermann J, Nakaya HI, Khan N, Ma H, Gama L, Machiah DK, Lawson B, Hakimpour P, Wang YC et al (2016) The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature 531:523–527PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Rodrigue-Gervais IG, Doiron K, Champagne C, Mayes L, Leiva-Torres GA, Vanie P Jr, Douglas T, Vidal SM, Alnemri ES, Saleh M (2018) The mitochondrial protease HtrA2 restricts the NLRP3 and AIM2 inflammasomes. Sci Rep 8:8446PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456:264–268PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sandstrom A, Mitchell PS, Goers L, Mu EW, Lesser CF, Vance RE (2019) Functional degradation: a mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science 364PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327:296–300PubMedCrossRefGoogle Scholar
  55. 55.
    Sharif H, Wang L, Wang WL, Magupalli VG, Andreeva L, Qiao Q, Hauenstein AV, Wu Z, Nunez G, Mao Y, Wu H (2019) Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570:338–343PubMedCrossRefGoogle Scholar
  56. 56.
    Sharma V, Verma S, Seranova E, Sarkar S, Kumar D (2018) Selective autophagy and xenophagy in infection and disease. Front Cell Dev Biol 6:147PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M, Fitzgerald KA, Sher A, Kehrl JH (2012) Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13:255–263PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514:187–192PubMedCrossRefGoogle Scholar
  59. 59.
    Spalinger MR, Lang S, Gottier C, Dai X, Rawlings DJ, Chan AC, Rogler G, Scharl M (2017) PTPN22 regulates NLRP3-mediated IL1B secretion in an autophagy-dependent manner. Autophagy 13:1590–1601PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES (2002) The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem 277:21119–21122PubMedCrossRefGoogle Scholar
  61. 61.
    Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16:495–501CrossRefGoogle Scholar
  62. 62.
    Stowe I, Lee B, Kayagaki N (2015) Caspase-11: arming the guards against bacterial infection. Immunol Rev 265:75–84PubMedCrossRefGoogle Scholar
  63. 63.
    Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286PubMedCrossRefGoogle Scholar
  64. 64.
    Sumpter R Jr, Sirasanagandla S, Fernandez AF, Wei Y, Dong X, Franco L, Zou Z, Marchal C, Lee MY, Clapp DW et al (2016) Fanconi anemia proteins function in mitophagy and immunity. Cell 165:867–881PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sun C, Diao Q, Lu J, Zhang Z, Wu D, Wang X, Xie J, Zheng G, Shan Q, Fan S et al (2019) Purple sweet potato color attenuated NLRP3 inflammasome by inducing autophagy to delay endothelial senescence. J Cell Physiol 234:5926–5939PubMedCrossRefGoogle Scholar
  66. 66.
    Swanson KV, Deng M, Ting JP (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19:477–489PubMedCrossRefGoogle Scholar
  67. 67.
    Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nature reviews. Immunology 10:210–215PubMedGoogle Scholar
  68. 68.
    Tye H, Yu CH, Simms LA, de Zoete MR, Kim ML, Zakrzewski M, Penington JS, Harapas CR, Souza-Fonseca-Guimaraes F, Wockner LF et al (2018) NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease. Nat Commun 9:3728PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Van Opdenbosch N, Lamkanfi M (2019) Caspases in cell death, inflammation, and disease. Immunity 50:1352–1364PubMedCrossRefGoogle Scholar
  70. 70.
    Vladimer GI, Weng D, Paquette SW, Vanaja SK, Rathinam VA, Aune MH, Conlon JE, Burbage JJ, Proulx MK, Liu Q et al (2012) The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37:96–107PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Wang Y, Meng C, Zhang J, Wu J, Zhao J (2019) Inhibition of GSK-3beta alleviates cerebral ischemia/reperfusion injury in rats by suppressing NLRP3 inflammasome activation through autophagy. Int Immunopharmacol 68:234–241PubMedCrossRefGoogle Scholar
  72. 72.
    Xia Y, Liu N, Xie X, Bi G, Ba H, Li L, Zhang J, Deng X, Yao Y, Tang Z et al (2019) The macrophage-specific V-ATPase subunit ATP6V0D2 restricts inflammasome activation and bacterial infection by facilitating autophagosome-lysosome fusion. Autophagy 15:960–975PubMedCrossRefGoogle Scholar
  73. 73.
    Xian H, Yang S, Jin S, Zhang Y, Cui J (2019) LRRC59 modulates type I interferon signaling by restraining the SQSTM1/p62-mediated autophagic degradation of pattern recognition receptor DDX58/RIG-I. Autophagy 1–11Google Scholar
  74. 75.
    Xu Y, Wang J, Xu W, Ding F, Ding W (2019) Prohibitin 2-mediated mitophagy attenuates renal tubular epithelial cells injury by regulating mitochondrial dysfunction and NLRP3 inflammasome activation. Am J Physiol Renal Physiol 316:F396–F407PubMedCrossRefGoogle Scholar
  75. 74.
    Xu H, Yang J, Gao W, Li L, Li P, Zhang L, Gong YN, Peng X, Xi JJ, Chen S et al (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513:237–241PubMedCrossRefGoogle Scholar
  76. 76.
    Yang F, Qin Y, Wang Y, Meng S, Xian H, Che H, Lv J, Li Y, Yu Y, Bai Y, Wang L (2019) Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. Int J Biol Sci 15:1010–1019PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Zhai Y, Lin P, Feng Z, Lu H, Han Q, Chen J, Zhang Y, He Q, Nan G, Luo X et al (2018) TNFAIP3-DEPTOR complex regulates inflammasome secretion through autophagy in ankylosing spondylitis monocytes. Autophagy 14:1629–1643PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q, Li Y, David L, Lu A, Wang WL et al (2015) Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350:404–409PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Zheng X, Hu M, Zang X, Fan Q, Liu Y, Che Y, Guan X, Hou Y, Wang G, Hao H (2019) Kynurenic acid/GPR35 axis restricts NLRP3 inflammasome activation and exacerbates colitis in mice with social stress. Brain Behav Immun 79:244–255PubMedCrossRefGoogle Scholar
  80. 80.
    Zhong FL, Mamai O, Sborgi L, Boussofara L, Hopkins R, Robinson K, Szeverenyi I, Takeichi T, Balaji R, Lau A et al (2016) Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell 167(187–202):e117Google Scholar
  81. 81.
    Zhong Z, Liang S, Sanchez-Lopez E, He F, Shalapour S, Lin XJ, Wong J, Ding S, Seki E, Schnabl B et al (2018) New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560:198–203PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, He F, Boassa D, Perkins G, Ali SR et al (2016) NF-kappaB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164:896–910PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Zhu S, Ding S, Wang P, Wei Z, Pan W, Palm NW, Yang Y, Yu H, Li HB, Wang G et al (2017) Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature 546:667–670PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Channing Division of Network MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations