Advertisement

Autophagy and Immune Tolerance

  • Yao-Xing Wu
  • Shou-Heng Jin
  • Jun CuiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1206)

Abstract

The immune system plays a critical role in defense against invading pathogens, and its function must be strictly controlled to maintain intracellular homeostasis. Once suffering microbial invasion or receiving danger signals, the immune system initiates the responses timely. After the threat removal, the immune system should be shut down to avoid the harm caused by excessive immune activation. Additionally, the immune system needs to be internally adjusted so that it does not respond to self-antigens to avoid autoimmune diseases. The states of nonresponse in immunity are termed as immune tolerance. Numerous studies indicated that macroautophagy (hereafter named as autophagy) is involved in T cells and B cells related immune tolerance. Recently, more and more researches demonstrated that autophagy is not only capable of nonselective degradation of cellular macromolecular components but also responsible for sorting and transporting autophagic substrates through a group of cargo receptors for selective degradation, which is called as selective autophagy. Recent studies indicated that selective autophagy can effectively regulate the immune tolerance and avoid over-activation of immune response by targeting multiple receptors and effectors of immune cells. In this chapter, we will focus on how autophagy participates explicitly in the adaptive and innate immune tolerance.

Keywords

Autophagy Immune tolerance Selective autophagic degradation Regulation 

Abbreviations

AIM2

Absent in melanoma 2

AMPK

Adenine monophosphate activated protein kinase

APC

Antigen-presenting cell

ASC

Apoptosis-associated speck-like protein containing a CARD

BMDM

Bone marrow derived macrophages

caspase

Cysteinyl aspartate specific proteinase

CCL5

CC chemokine ligand 5

CD4

Cluster of differentiation 4

cGAMP

Cyclic guanosine monophosphate–adenosine monophosphate

cGAS

Cyclic GMP-AMP synthase

cTEC

Thymic cortical epithelial cell

CTLA-4

Cytotoxic T-lymphocyte-associated protein 4

DAMP

Danger-associated molecular pattern

DC

Dendritic cell

DP

Double-positive cell

EGR

Early growth response protein

FAO

Fatty acid oxidation

FAS

Fatty acid biosynthesis

GSDMD

Gasdermin D

GWAS

Genome-wide association study

GZMB

Granzyme B

HFD

High-fat diet

HSV-1

Herpes simplex virus type 1

IFN

Interferon

IKK

IκB kinase

IL

Interleukin

ILC

Innate lymphoid cell

IRF3

Interferon regulatory factor 3

ISG15

Interferon-stimulated gene 15

JAK2

Janus kinase 2

JIA

Juvenile idiopathic arthritis

LC3

Microtubule-associated proteins light chain 3

LPS

Lipopolysaccharide

LRRC25

Leucine-rich repeat-containing protein 25

MAVS

Mitochondrial antiviral-signaling protein

MHC

Major histocompatibility complex

mTOR

Mammalian target of rapamycin

MyD88

Myeloid differentiation primary response 88

NBR1

Neighbor of BRCA1 gene 1

NDP52

Nuclear dot protein 52 kDa

NF-κB

Nuclear factor kappa-B

NK

Natural killer cell

NLRP3

NACHT, LRR and PYD domains-containing protein 3

NOD2

Nucleotide-binding oligomerization domain-containing protein 2

OPTN

Optineurin

PAI-2

Plasminogen activator inhibitor type 2

PAMP

Pathogen-associated molecular pattern

PD1

Programmed cell death protein 1

PRR

Pattern recognition receptor

PTPN1

Non receptor type 1

RIG-I

Retinoic acid-inducible gene I

ROS

Reactive oxygen species

SKP2

S-phase kinase-associated protein 2

STAT1

Signal transducer and activator of transcription 1

STING

Stimulator of interferon genes protein

TAK1

Transforming growth factor activated kinase-1

TBK1

TANK-binding kinase 1

TCR

T cell receptor

TGF-β

Transforming growth factor-β

Th

Helper T cell

TLR

Toll-like receptor

TNF

Tumor necrosis factor

Treg

Regulatory T cell

TRIF

TIR domain-containing adapter molecule 1

TRIM

Tripartite motif containing

ULK1

UNC-51-like kinase 1

VPS34

Vacuolar protein sorting 34

References

  1. Aichinger M, Wu C, Nedjic J, Klein L (2013) Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. J Exp Med 210:287–300CrossRefGoogle Scholar
  2. Chen M, Hong MJ, Sun H, Wang L, Shi X, Gilbert BE, Corry DB, Kheradmand F, Wang J (2014) Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat Med 20:503–510CrossRefGoogle Scholar
  3. Choi Y, Bowman JW, Jung JU (2018) Autophagy during viral infection—a double-edged sword. Nat Rev Microbiol 16:340–353CrossRefGoogle Scholar
  4. Deretic V, Kimura T, Timmins G, Moseley P, Chauhan S, Mandell M (2015) Immunologic manifestations of autophagy. J Clin Investig 125:75–84CrossRefGoogle Scholar
  5. Deretic V, Levine B (2018) Autophagy balances inflammation in innate immunity. Autophagy 14:243–251CrossRefGoogle Scholar
  6. Gapin L (2016) Development of invariant natural killer T cells. Curr Opin Immunol 39:68–74CrossRefGoogle Scholar
  7. Ghislat G, Lawrence T (2018) Autophagy in dendritic cells. Cell Mol ImmunolGoogle Scholar
  8. Hubbard-Lucey VM, Shono Y, Maurer K, West ML, Singer NV, Ziegler CG, Lezcano C, Motta AC, Schmid K, Levi SM, Murphy GF, Liu C, Winkler JD, Amaravadi RK, Rogler G, Dickinson AM, Holler E, van den Brink MR, Cadwell K (2014) Autophagy gene Atg16L1 prevents lethal T cell alloreactivity mediated by dendritic cells. Immunity 41:579–591CrossRefGoogle Scholar
  9. Ireland JM, Unanue ER (2011) Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J Exp Med 208:2625–2632CrossRefGoogle Scholar
  10. Jin SH, Tian S, Chen YM, Zhang CX, Xie WH, Xia XJ, Cui J, Wang RF (2016) USP19 modulates autophagy and antiviral immune responses by deubiquitinating Beclin-1. EMBO J 35:866–880CrossRefGoogle Scholar
  11. Jin SH, Tian S, Luo M, Xie WH, Liu T, Duan TH, Wu YX, Cui J (2017) Tetherin suppresses type I interferon signaling by targeting MAVS for NDP52-mediated selective autophagic degradation in human cells. Mol Cell 68:308–322CrossRefGoogle Scholar
  12. Joubert PE, Albert ML (2013) Autophagy during viral infections: a double-edge sword. Virologie 17:331–342Google Scholar
  13. Kabat AM, Harrison OJ, Riffelmacher T, Moghaddam AE, Pearson CF, Laing A, Abeler-Dorner L, Forman SP, Grencis RK, Sattentau Q, Simon AK, Pott J, Maloy KJ (2016a) The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. Elife 5:e12444CrossRefGoogle Scholar
  14. Kabat AM, Pott J, Maloy KJ (2016b) The mucosal immune system and its regulation by autophagy. Front Immunol 7:240CrossRefGoogle Scholar
  15. Kang C, Xu QK, Martin TD, Li MZ, Demaria M, Aron L, Lu T, Yankner BA, Campisi J, Elledge SJ (2015) The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349:12CrossRefGoogle Scholar
  16. Lopez-Soto A, Bravo-San Pedro JM, Kroemer G, Galluzzi L, Gonzalez S (2017) Involvement of autophagy in NK cell development and function. Autophagy 13:633–636CrossRefGoogle Scholar
  17. Maurer K, Torres VJ, Cadwell K (2015) Autophagy is a key tolerance mechanism during Staphylococcus aureus infection. Autophagy 11:1184–1186CrossRefGoogle Scholar
  18. Miller BC, Zhao Z, Stephenson LM, Cadwell K, Pua HH, Lee HK, Mizushima NN, Iwasaki A, He YW, Swat W, Virgin HWT (2008) The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4:309–314CrossRefGoogle Scholar
  19. Mocholi E, Dowling SD, Botbol Y, Gruber RC, Ray AK, Vastert S, Shafit-Zagardo B, Coffer PJ, Macian F (2018) Autophagy is a tolerance-avoidance mechanism that modulates TCR-mediated signaling and cell metabolism to prevent induction of T cell anergy. Cell Rep 24:1136–1150CrossRefGoogle Scholar
  20. Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L (2008) Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455:396–400CrossRefGoogle Scholar
  21. Pua HH, Dzhagalov I, Chuck M, Mizushima N, He YW (2007) A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 204:25–31CrossRefGoogle Scholar
  22. Puleston DJ, Zhang H, Powell TJ, Lipina E, Sims S, Panse I, Watson AS, Cerundolo V, Townsend AR, Klenerman P, Simon AK (2014) Autophagy is a critical regulator of memory CD8(+) T cell formation. Elife 3Google Scholar
  23. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, Tanaka K, Kawai T, Tsujimura T, Takeuchi O, Yoshimori T, Akira S (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456:264–268CrossRefGoogle Scholar
  24. Stranks AJ, Hansen AL, Panse I, Mortensen M, Ferguson DJP, Puleston DJ, Shenderov K, Watson AS, Veldhoen M, Phadwal K, Cerundolo V, Simon AK (2015) Autophagy controls acquisition of aging features in macrophages. J Innate Immun 7:375–391CrossRefGoogle Scholar
  25. Sukseree S, Mildner M, Rossiter H, Pammer J, Zhang CF, Watanapokasin R, Tschachler E, Eckhart L (2012) Autophagy in the thymic epithelium is dispensable for the development of self-tolerance in a novel mouse model. PLoS ONE 7:e38933CrossRefGoogle Scholar
  26. Ushio H, Ueno T, Kojima Y, Komatsu M, Tanaka S, Yamamoto A, Ichimura Y, Ezaki J, Nishida K, Komazawa-Sakon S, Niyonsaba F, Ishii T, Yanagawa T, Kominami E, Ogawa H, Okumura K, Nakano H (2011) Crucial role for autophagy in degranulation of mast cells. J Allergy Clin Immunol. 127:1267–1282CrossRefGoogle Scholar
  27. Wei J, Long L, Yang K, Guy C, Shrestha S, Chen Z, Wu C, Vogel P, Neale G, Green DR, Chi H (2016) Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol 17:277–285CrossRefGoogle Scholar
  28. Wenger T, Terawaki S, Camosseto V, Abdelrassoul R, Mies A, Catalan N, Claudio N, Clavarino G, De Gassart A, Rigotti Fde A, Gatti E, Pierre P (2012) Autophagy inhibition promotes defective neosynthesized proteins storage in ALIS, and induces redirection toward proteasome processing and MHCI-restricted presentation. Autophagy 8:350–363CrossRefGoogle Scholar
  29. Wu TT, Li WM, Yao YM (2016) Interactions between autophagy and inhibitory cytokines. Int J Biol Sci 12:884–897CrossRefGoogle Scholar
  30. Zhong ZY, Sanchez-Lopez E, Karin M (2016) Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell 166:288–298CrossRefGoogle Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life SciencesSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations