Autophagy and Ubiquitin-Proteasome System

  • Yan WangEmail author
  • Wei-Dong Le
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1206)


Millions of protein molecules are synthesized per minute in each cell, and simultaneously, millions of protein molecules are degraded. Mutated and misfolded newly synthesized proteins are rapidly degraded to prevent the toxicity caused by the accumulation of these protein fragments. There are two main mechanisms of intracellular protein degradation: the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway (ALP). There is a certain relationship between these two mechanisms, and there are some molecules that initiate compensatory effects to prevent disease progression.


Autophagy Lysosome Ubiquitin Proteasome 


  1. Brown R, Kaganovich D (2016) Look out autophagy, ubiquilin UPS its game. Cell 166:797–799CrossRefGoogle Scholar
  2. Cao DJ, Jiang N, Blagg A et al (2013) Mechanical unloading activates FoxO3 to trigger Bnip3-dependent cardiomyocyte atrophy. J Am Heart Assoc 2:e000016CrossRefGoogle Scholar
  3. Ciechanover A, Kwon YT (2017) Protein quality control by molecular chaperones in neurodegeneration. Front Neurosci 11:185CrossRefGoogle Scholar
  4. Deger JM, Gerson JE, Kayed R (2015) The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration. Aging Cell 14:715–724CrossRefGoogle Scholar
  5. Diao J, Liu R, Rong Y et al (2015) ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520:563–566CrossRefGoogle Scholar
  6. Du YL, Yang DH, Li L et al (2009) An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity. Autophagy 5:663–675CrossRefGoogle Scholar
  7. Guo F, He XB, Li S et al (2017) A central role for phosphorylated p38alpha in linking proteasome inhibition-induced apoptosis and autophagy. Mol Neurobiol 54:7597–7609CrossRefGoogle Scholar
  8. Hetz C, Chevet E, Oakes SA (2015) Proteostasis control by the unfolded protein response. Nat Cell Biol 17:829–838CrossRefGoogle Scholar
  9. Isakson P, Holland P, Simonsen A (2013) The role of ALFY in selective autophagy. Cell Death Differ 20:12–20CrossRefGoogle Scholar
  10. Lazo PA (2017) Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression. Cell Signal 33:49–58CrossRefGoogle Scholar
  11. Leyk J, Goldbaum O, Noack M et al (2015) Inhibition of HDAC6 modifies tau inclusion body formation and impairs autophagic clearance. J Mol Neurosci 55:1031–1046CrossRefGoogle Scholar
  12. Liu J, Su H, Wang X (2016) The COP9 signalosome coerces autophagy and the ubiquitin-proteasome system to police the heart. Autophagy 12:601–602CrossRefGoogle Scholar
  13. Livneh I, Cohen-Kaplan V, Cohen-Rosenzweig C et al (2016) The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res 26:869–885CrossRefGoogle Scholar
  14. Maiese K (2016) Regeneration in the nervous system with erythropoietin. Front Biosci (Landmark Ed) 21:561–596CrossRefGoogle Scholar
  15. Minoia M, Boncoraglio A, Vinet J et al (2014) BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: implications for a proteasome-to-autophagy switch. Autophagy 10:1603–1621CrossRefGoogle Scholar
  16. Park HJ, Ryu D, Parmar M et al (2017) The ER retention protein RER1 promotes alpha-synuclein degradation via the proteasome. PLoS ONE 12:e0184262CrossRefGoogle Scholar
  17. Rivero-Rios P, Madero-Perez J, Fernandez B et al (2016) Targeting the autophagy/lysosomal degradation pathway in Parkinson’s disease. Curr Neuropharmacol 14:238–249CrossRefGoogle Scholar
  18. Russo R, Varano GP, Adornetto A et al (2018) Rapamycin and fasting sustain autophagy response activated by ischemia/reperfusion injury and promote retinal ganglion cell survival. Cell Death Dis 9:981CrossRefGoogle Scholar
  19. Sarraf SA, Raman M, Guarani-Pereira V et al (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496:372–376CrossRefGoogle Scholar
  20. Sasazawa Y, Sato N, Umezawa K et al (2015) Conophylline protects cells in cellular models of neurodegenerative diseases by inducing mammalian target of rapamycin (mTOR)-independent autophagy. J Biol Chem 290:6168–6178CrossRefGoogle Scholar
  21. Sulistio YA, Heese K (2016) The ubiquitin-proteasome system and molecular chaperone deregulation in Alzheimer’s disease. Mol Neurobiol 53:905–931CrossRefGoogle Scholar
  22. Tan CC, Yu JT, Tan MS et al (2014) Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy. Neurobiol Aging 35:941–957CrossRefGoogle Scholar
  23. Vuppalapati KK, Bouderlique T, Newton PT et al (2015) Targeted deletion of autophagy genes Atg5 or Atg7 in the chondrocytes promotes caspase-dependent cell death and leads to mild growth retardation. J Bone Miner Res 30:2249–2261CrossRefGoogle Scholar
  24. Wang DT, Yang YJ, Huang RH et al (2015) Myostatin activates the ubiquitin-proteasome and autophagy-lysosome systems contributing to muscle wasting in chronic kidney disease. Oxid Med Cell Longev 2015:684965PubMedPubMedCentralGoogle Scholar
  25. Willis MS, Bevilacqua A, Pulinilkunnil T et al (2014) The role of ubiquitin ligases in cardiac disease. J Mol Cell Cardiol 71:43–53CrossRefGoogle Scholar
  26. Zaffagnini G, Savova A, Danieli A et al (2018) Phasing out the bad—how SQSTM1/p62 sequesters ubiquitinated proteins for degradation by autophagy. Autophagy 14:1280–1282CrossRefGoogle Scholar
  27. Zhang XJ, Li L, Chen S et al (2011) Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Autophagy 7:412–425CrossRefGoogle Scholar
  28. Zhang XJ, Chen S, Song L et al (2014) MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis. Autophagy 10:588–602CrossRefGoogle Scholar
  29. Zhou JS, Zhao Y, Zhou HB et al (2016) Autophagy plays an essential role in cigarette smoke-induced expression of MUC5AC in airway epithelium. Am J Physiol Lung Cell Mol Physiol 310:L1042–1052CrossRefGoogle Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric DiseasesCollege of Pharmaceutical Sciences of Soochow UniversitySuzhouChina
  2. 2.Liaoning Provincial Center for Clinical Research on Neurological DiseasesThe First Affiliated Hospital, Dalian Medical UniversityDalianPeople’s Republic of China

Personalised recommendations