Regulation of ATG and Autophagy Initiation

  • Wen Li
  • Lining ZhangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1206)


ATG is involved in multiple processes of autophagosome formation, including the initial phase of autophagy. The mammalian autophagy complex-ULK1 complex is composed of ULK1, FIP200, ATG13 and ATG101, and the yeast autophagy initiation complex-ATG1 complex is composed of ATG1, ATG13, ATG17, ATG29 and ATG31. After this complex is activated, it binds and phosphorylates ATG9 on the vesicles. Then PI3KC3-C1 (yeast: ATG34: ATG15: ATG6: ATG14 or mammal animal: ATG34: ATG15: BECN1: ATG14L) is recruited to the PAS. Further, ATG12-ATG5-ATG16 complex is localized on PAS (Yeast) or localized on the outer surface of the membrane (mammal) and makes binding of ATG8 (LC3) with PE to form ATG8-PE complex, promoting autophagic membrane elongation, closure and formation autophagosome and autophagosome lysosome.


ULK1/ATG1 complex PI3KC3-C1 compounds ATG8(LC3) ATG9 



Γ-aminobutyric acid receptor-associated protein


Golgi-associated ATPase enhancer

Golgi v-SNARE

Golgi vesicle-associated N-ethylmaleimide-sensitive factor attachment protein receptor




Phosphatidylinositol phosphatidylinositol


Phosphatidylinositol 3-phosphate


Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor


Microtubule-associated protein 1 light-chain 3


N-ethylmaleimide-sensitive factor


  1. Bartholomew CR, Suzuki T, Du Z, Backues SK, Jin MY, Lynch-Day MA, Umekawa M, Kamath A, Zhao MT, Xie ZP, Inoki K, Klionsky DJ (2012) Ume6 transcription factor is part of a signaling cascade that regulates autophagy. Proc Natl Acad Sci USA 109:11206–11210CrossRefGoogle Scholar
  2. Cheong H, Klionsky DJ (2008) Biochemical methods to monitor autophagy-related processes in yeast: autophagy: lower eukaryotes and non-mammalian systems. Pt A 451:1–26Google Scholar
  3. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364CrossRefGoogle Scholar
  4. Fujioka Y, Noda NN, Nakatogawa H, Ohsumi Y, Inagaki F (2010) Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J Biol Chem 285:1508–1515CrossRefGoogle Scholar
  5. Fujita N, Hayashi-Nishino M, Fukumoto H, Omori H, Yamamoto A, Noda T, Yoshimori T (2008) An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell 19:4651–4659CrossRefGoogle Scholar
  6. Fujita N, Saitoh T, Kageyama S, Akira S, Noda T, Yoshimori T (2009) Differential involvement of Atg16L1 in Crohn disease and canonical autophagy: analysis of the organization of the Atg16L1 complex in fibroblasts. J Biol Chem 284:32602–32609CrossRefGoogle Scholar
  7. Nakatogawa H (2013) Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem 55:39–50CrossRefGoogle Scholar
  8. Hurley JH, Young LN (2017) Mechanisms of Autophagy Initiation. Annu Rev Biochem 86(86):225–244CrossRefGoogle Scholar
  9. Ichimura Y, Imamura Y, Emoto K, Umeda M, Noda T, Ohsumi Y (2004) In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J Biol Chem 279:40584–40592CrossRefGoogle Scholar
  10. Itakura E, Mizushima N (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764–776CrossRefGoogle Scholar
  11. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728CrossRefGoogle Scholar
  12. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117:2805–2812CrossRefGoogle Scholar
  13. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bamber BA (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4(2):151–175Google Scholar
  14. Lamb CA, Nuhlen S, Judith D, Frith D, Snijders AP, Behrends C, Tooze SA (2016) TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic. EMBO J 35:281–301CrossRefGoogle Scholar
  15. Leil TA, Chen ZW, Chang CS, Olsen RW (2004) GABAA receptor-associated protein traffics GABAA receptors to the plasma membrane in neurons. J Neurosci 24:11429–11438CrossRefGoogle Scholar
  16. Mizushima N, Noda T, Ohsumi Y (1999) Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J 18:3888–3896CrossRefGoogle Scholar
  17. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–668CrossRefGoogle Scholar
  18. Muller JM, Shorter J, Newman R, Deinhardt K, Sagiv Y, Elazar Z, Warren G, Shima DT (2002) Sequential SNARE disassembly and GATE-16-GOS-28 complex assembly mediated by distinct NSF activities drives Golgi membrane fusion. J Cell Biol 157:1161–1173CrossRefGoogle Scholar
  19. Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–178CrossRefGoogle Scholar
  20. Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K, Nakatogawa H, Ohsumi Y, Inagaki F (2011) Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol Cell 44:462–475CrossRefGoogle Scholar
  21. Ohashi Y, Soler N, García Ortegón M, Zhang L, Kirsten ML, Perisic O, Masson GR, Burke JE, Jakobi AJ, Apostolakis AA, Johnson CM (2016) Characterization of Atg38 and NRBF2, a fifth subunit of the autophagic Vps34/PIK3C3 complex. Autophagy 12: 2129–2144CrossRefGoogle Scholar
  22. Rao Y, Perna MG, Hofmann B, Beier V, Wollert T (2016) The Atg1-kinase complex tethers Atg9-vesicles to initiate autophagy. Nat Commun 7:10338CrossRefGoogle Scholar
  23. Sagiv Y, Legesse-Miller A, Porat A, Elazar Z (2000) GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J 19:1494–1504CrossRefGoogle Scholar
  24. Sawa-Makarska J, Abert C, Romanov J, Zens B, Ibiricu I, Martens S (2014) Cargo binding to Atg19 unmasks additional Atg8 binding sites to mediate membrane-cargo apposition during selective autophagy. Nat Cell Biol 16:425–433CrossRefGoogle Scholar
  25. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760CrossRefGoogle Scholar
  26. Shpilka T, Weidberg H, Pietrokovski S, Elazar Z (2011) Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol 12:226CrossRefGoogle Scholar
  27. Slobodkin MR, Elazar Z (2013) The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem 55:51–64CrossRefGoogle Scholar
  28. Sogawa A, Yamazaki A, Yamasaki H, Komi M, Manabe T, Tajima S, Hayashi M, Nomura M (2018) SNARE Proteins LjVAMP72a and LjVAMP72b are required for root symbiosis and root hair formation in lotus japonicus. Front Plant Sci 9:1992CrossRefGoogle Scholar
  29. Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, Sawada N, Yamada A, Mizushima N, Uchiyama Y, Kominami E, Tanaka K, Komatsu M (2008) The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19:4762–4775CrossRefGoogle Scholar
  30. Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12:209–218CrossRefGoogle Scholar
  31. Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM, Ferraiuolo L, Myszczynska MA, Higginbottom A, Walsh MJ, Whitworth AJ, Kaspar BK, Meyer K, Shaw PJ, Grierson AJ, de Vos KJ (2016) The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J 35:1656–1676CrossRefGoogle Scholar
  32. Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29:1792–1802CrossRefGoogle Scholar
  33. Wen X, Klionsky DJ (2016) An overview of macroautophagy in yeast. J Mol Biol 428:1681–1699CrossRefGoogle Scholar
  34. Xie Z, Nair U, Klionsky DJ (2008) Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 19:3290–3298CrossRefGoogle Scholar
  35. Yu ZQ, Ni T, Hong B, Wang HY, Jiang FJ, Zou S, Chen Y, Zheng XL, Klionsky DJ, Liang Y, Xie Z (2012) Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy 8:883–892CrossRefGoogle Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Immunology, School of Basic Medical ScienceShandong UniversityJinanChina

Personalised recommendations