Advertisement

In-situ Measurements of Aerosols from the High-Altitude Location in the Central Himalayas

  • Hema JoshiEmail author
  • Manish Naja
  • Tarun Gupta
Chapter
Part of the Energy, Environment, and Sustainability book series (ENENSU)

Abstract

Aerosols, both natural and anthropogenic, affect the Earth’s climate directly due to the absorption and scattering of solar radiation and indirectly by modifying the cloud microphysics. Due to the short lifetime of these aerosols, their distribution is non-uniform and large uncertainties exist in their estimates at global and regional scale. The characteristics of atmospheric aerosols vary largely from one region to another due to spatial and temporal variations in the emission sources, transport, atmospheric transformation and removal of aerosol particles. The aerosol measurements over the Himalayan region are of crucial importance in order to provide a far-field picture quite away from potential sources. The ground-based measurements of aerosols are utilized along with satellite data to explain various aerosol characteristics over the Himalayan region. The roles of different processes such as boundary layer dynamics, meteorology, regional and long-range transport are assessed. In addition, the aerosol variation over the foothills of the Himalayas in the Indo-Gangetic Plain region has also been studied and the role of the boundary layer dynamics and updraft/downdraft of aerosols is elaborated. The high-altitude location of Himalayas is characterized by the low aerosol loading specially in winter, while significant aerosol abundance is observed in the spring. However, the significant aerosol abundance is observed over the foothills location throughout the year. The strong confinement of aerosols in the foothill region is evident, which leads to the significant enhancement in the surface concentration of aerosols. Interestingly, in the spring season, significant aerosol abundance is seen over the Himalayan region as well. The investigation of the mixing layer depth and the vertical distribution of aerosols over this region in spring reveals the transport and buildup of aerosols from the foothills region to the Himalayan region. The role of absorbing aerosols in the radiation budget over the central Himalaya region is also discussed.

Keywords

Aerosol optical depth Black carbon Mixing layer depth Vertical distribution Himalayas Indo-Gangetic Plain 

Notes

Acknowledgements

The present work was carried out under ISRO-GBP (ARFI) project. The authors highly acknowledge the ISRO-GBP (ARFI) and ISRO-GBP (ATCTM) projects. The author HJ wants to acknowledge Dr. Rajesh Kumar for providing the WRF model simulations. The CO data was obtained from Piyush Bhardwaj. The help and support received from Prof. K. P. Singh during measurement at Pantnagar site is highly acknowledged. Special thanks to the PI of AERONET site at Pantnagar for providing quality assured data. The satellite datasets of aerosols were obtained from MODIS via Giovanni site, and CALIPSO from NASA Langley Research Center Atmospheric Science Data Center. The HYSPLIT model made available from NOAA Air Resources Laboratory was also used and is acknowledged.

References

  1. Agnihotri R, Mandal TK, Karapurkar SG, Naja M, Gadi R, Ahammmed YN, Kumar A, Saud T, Saxena M (2011) Stable carbon and nitrogen isotopic composition of bulk aerosols over India and northern Indian Ocean. Atmos Environ 45:2828–2835.  https://doi.org/10.1016/j.atmosenv.2011.03.003CrossRefGoogle Scholar
  2. Alfaro SC, Gaudichet A, Gomes L, Maillé M (1997) Modeling the size distribution of a soil aerosol produced by sandblasting. J Geophys Res 102(D10):11239–11249.  https://doi.org/10.1029/97JD00403CrossRefGoogle Scholar
  3. Angstrom, A. (1964) The parameters of atmospheric turbidity. Tellus 16(1):64–75CrossRefGoogle Scholar
  4. Babu SS, Manoj M, Moorthy KK, Gogoi M, Nair V, Kompalli S, Satheesh SK, Niranjan K, Ramagopal K, Bhuyan PK, Singh D (2013) Trends in aerosol optical depth over Indian region: potential causes and impact indicators. J Geophys Res: Atmos 118:11794–11806Google Scholar
  5. Baumgardner D, Raga GB, Peralta O, Rosas I, Castro T, Kuhlbusch T, John A, Petzold A (2002) Diagnosing black carbon trends in large urban areas using carbon monoxide measurements. J Geophys Res: Atmos 107(D21):8342.  https://doi.org/10.1029/2001jd000626CrossRefGoogle Scholar
  6. Blanchard DC (1985) The oceanic production of atmospheric sea salt. J Geophys Res 90:961–963CrossRefGoogle Scholar
  7. Bodhaine BA (1995) Aerosol absorption measurements at Barrow, Mauna Loa and the south pole. J Geophys Res 100(D5):8967–8975.  https://doi.org/10.1029/95JD00513CrossRefGoogle Scholar
  8. Bonasoni P, Laj P, Marinoni A, Sprenger M, Angelini F, Arduini J, Bonafe U, Calzolari F, Colombo T, Decesari S, Di Biagio C, di Sarra AG, Evangelisti F, Duchi R, Facchini MC, Fuzzi S, Gobbi GP, Maione M, Panday A, Roccato F, Sellegri K, Venzac H, Verza GP, Villani P, Vuillermoz E, Cristofanelli P (2010) Atmospheric Brown Clouds in the Himalayas: first two years of continuous observations at the Nepal-Climate Observatory at Pyramid (5079 m). Atmos Chem Phys Discuss 10:4823–4885CrossRefGoogle Scholar
  9. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552.  https://doi.org/10.1002/jgrd.50171Google Scholar
  10. Boucher O, Randall D, Artaxo P, Bretherton C, Feingold, G, Forster P, Kerminen V-M, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B, Zhang XY (2013) Clouds and aerosols. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, USAGoogle Scholar
  11. Charlson RJ, Langner J, Rodhe H, Leovy CB, Warren SG (1991) Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus 43AB:152–163CrossRefGoogle Scholar
  12. Charlson RJ, Schwartz SE, Hales JM, Cess RD, Coakley JA, Hansen JE, Hofmann DJ (1992) Climate forcing by anthropogenic aerosols. Science 255:423–430CrossRefGoogle Scholar
  13. Chin M, Ginoux P, Kinne S, Torres O, Holben BN, Duncan BN, Martin RV, Logan JA, Higurashi A, Nakajima T (2002) Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements. J Atmos Sci 59:461–483CrossRefGoogle Scholar
  14. Dey S, Tripathi SN, Singh RP (2004) Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. J Geophys Res 109:D20211.  https://doi.org/10.1029/2004JD004924CrossRefGoogle Scholar
  15. Draxler RR, Rolph GD (2003) Real-time environmental applications and display system (READY). NOAA Air Resources Laboratory, Silver Spring, MD. http://www.arl.noaa.gov/ready/hysplit4.html
  16. Dumka UC, Moorthy KK, Pant P, Hegde P, Sagar R, Pandey K (2008) Physical and optical characteristics of atmospheric aerosols during ICARB at Manora Peak, Nainital: a sparsely inhabited, high-altitude location in the Himalayas. J Earth Syst Sci 117(S1):399–405CrossRefGoogle Scholar
  17. Dumka UC, Moorthy KK, Kumar R, Hegde P, Sagar R, Pant P, Singh N, Babu SS (2010) Characteristics of aerosol black carbon mass concentration over a high altitude location in the Central Himalayas from multi-year measurements. Atmos Res 96:510–521.  https://doi.org/10.1016/j.atmosres.2009.12.010CrossRefGoogle Scholar
  18. Eck TF, Holben BN, Reid JS, Dubovik O, Kinne S, Smirnov A, O’Neill NT, Slutsker I (1999) The wavelength dependence of the optical depth of biomass burning, urban and desert dust aerosols. J Geophys Res 104:31333–31350CrossRefGoogle Scholar
  19. Fitzgerald JW (1991) Marine aerosols: a review. Atmos Environ 25A:533–545CrossRefGoogle Scholar
  20. Flanner MG, Zender CS, Hess PG, Mahowald NM, Painter TH, Ramanathan V, Rasch PJ (2009) Springtime warming and reduced snow cover from carbonaceous particles. Atmos Chem Phys 9(7):2481–2497.  https://doi.org/10.5194/acp-9-2481-2009CrossRefGoogle Scholar
  21. Gautam R, Hsu NC, Tsay S-C, Lau WK, Holben B, Bell S, Smirnov A, Li C, Hansell R, Ji Q, Payra S, Aryal D, Kayastha R, Kim KM (2011) Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: distribution, properties and radiative effects during the 2009 pre-monsoon season. Atmos Chem Phys 11:12841–12863.  https://doi.org/10.5194/acp-11-12841-2011CrossRefGoogle Scholar
  22. Gautam R, Hsu NC, Lau K-M (2010) Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: implications for regional climate warming. J Geophys Res 115:D17208.  https://doi.org/10.1029/2010JD013819CrossRefGoogle Scholar
  23. Giles DM, Holben BN, Tripathi SN, Eck TF, Newcomb WW, Slutsker I, Dickerson RR, Thompson AM, Mattoo S, Wang S-H, Singh RP, Sinyuk A, Schafer JS (2011) Aerosol properties over the Indo-Gangetic Plain: a mesoscale perspective from the TIGERZ experiment. J Geophys Res 116:D18203.  https://doi.org/10.1029/2011JD015809CrossRefGoogle Scholar
  24. Gobbi GP, Angelini F, Bonasoni P, Verza GP, Marinoni A, Barnaba F (2010) Sunphotometry of the 2006–2007 aerosol optical/radiative properties at the Himalayan Nepal Climate Observatory—Pyramid (5079 m a.s.l.). Atmos Chem Phys Discuss 10:1193–1220CrossRefGoogle Scholar
  25. Grell GA et al (2005) Fully coupled “online” chemistry within the WRF model. Atmos Environ 39:6957–6975CrossRefGoogle Scholar
  26. Hansen AD, Rosen AH, Novakov T (1984) The Aethalometer—an instrument for the real-time measurement of optical absorption by aerosol particles. Sci Total Environ 36:191–196.  https://doi.org/10.1016/0048-9697(84)90265-1CrossRefGoogle Scholar
  27. Hansen JE, Sato M, Lacis A, Ruedy R, Tegen I, Matthews E (1998). Climate forcings in the industrial era. Proc Natl Acad Sci 12753–12758CrossRefGoogle Scholar
  28. Haywood JM, Ramaswamy V (1998) Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. J Geophys Res 103:6043–6058CrossRefGoogle Scholar
  29. Hegde P, Pant P, Naja M, Dumka UC, Sagar R (2007). South Asian dust episode in June 2006: aerosol observations in the Central Himalayas. Geophys Res Lett 34:L23802.  https://doi.org/10.1029/2007gl030692CrossRefGoogle Scholar
  30. Hinds W (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, New YorkGoogle Scholar
  31. Holben BN, Tanre D, Smirnov A, Eck TF, Slutsker I, Abuhassan N, Newcomb WW, Schafer JS, Chatenet B, Lavenu F, Kaufman YJ, Vande Castle J, Setzer A, Markham B, Clark D, Frouin R, Halthore R, Karneli A, O’Neill NT, Pietras C, Pinker RT, Voss K, Zibordi G (2001) An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J Geophys Res 106(D11):12067–12097CrossRefGoogle Scholar
  32. Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16CrossRefGoogle Scholar
  33. Ichoku C, Levy L, Kaufman YJ, Remer LA, Rong-Rong L, Martins VJ, Holben BN, Abuhassan N, Slutsker I, Eck TF, Pietras C (2002) Analysis of the performance characteristics of the five-channel Microtops II sun photometer for measuring aerosol optical thickness and precipitable water. J Geophys Res 107:D13.  https://doi.org/10.1029/2001JD001302CrossRefGoogle Scholar
  34. IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom/New York, NY, USAGoogle Scholar
  35. Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409:695–697CrossRefGoogle Scholar
  36. Jain SK (2008) Impact of retreat of Gangotri glacier on the flow of Ganga River. Curr Sci 95:1012–1014Google Scholar
  37. Janssens-Maenhout G et al (2012) EDGAR-HTAP: a harmonized gridded air pollution emission dataset based on national inventories. EUR Report No. EUR 25229, European Commission Publications Office, Ispra, Italy, p 40Google Scholar
  38. Joshi H, Naja M, Singh KP, Kumar R, Bhardwaj P, Babu SS, Satheesh SK, Moorthy KK, Chandola HC (2016) Investigations of aerosol black carbon from a semi-urban site in the Indo-Gangetic Plain region. Atmos Environ.  https://doi.org/10.1016/j.atmosenv.2015.04.007CrossRefGoogle Scholar
  39. Junge CE (1963) Air chemistry and radioactivity. Academic Press, New YorkGoogle Scholar
  40. Koch D, Hansen J (2005) Distant origins of Arctic black carbon: a Goddard Institute for Space Studies ModelE experiment. J Geophys Res 110:D04204.  https://doi.org/10.1029/2004JD005296CrossRefGoogle Scholar
  41. Kulkarn AV, Bahuguna IM, Rathore BP, Singh SK, Randhawa SS, Sood RK, Dhar S (2007) Glacial retreat in Himalaya using Indian Remote Sensing Satellite data. Curr Sci 92(1):69–74Google Scholar
  42. Kumar R, Naja M, Satheesh SK, Ojha N, Joshi H, Sarangi T, Pant P, Dumka UC, Hegde P, Venkataramani S (2011) Influences of the springtime northern Indian biomass burning over the central Himalayas. J Geophys Res 116:D19302.  https://doi.org/10.1029/2010JD015509CrossRefGoogle Scholar
  43. Kumar R, Naja M, Pfister GG, Barth MG, Brasseur GP (2012) Simulations over South Asia using the Weather Research and Forecasting model with Chemistry (WRF-Chem): set-up and meteorological evaluation. Geosci Model Dev 5:321–343.  https://doi.org/10.5194/gmd-5-321-2012CrossRefGoogle Scholar
  44. Lau K-M, Kim K-M (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810.  https://doi.org/10.1029/2006GL027546CrossRefGoogle Scholar
  45. Lau KM, Kim M, Kim K, Lee W (2010) Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ Res Lett 5:025204.  https://doi.org/10.1088/1748-9326/5/2/025204CrossRefGoogle Scholar
  46. Lawrence MG, Lelieveld J (2010) Atmospheric pollutant outflow from southern Asia: a review. Atmos Chem Phys 10:11017–11096.  https://doi.org/10.5194/acp-10-11017-2010CrossRefGoogle Scholar
  47. Lelieveld J, Crutzen PJ, Ramanathan V, Andreae MO, Brenninkmeijer CAM, Campos T, Cass GR, Dickerson RR, Fischer H, de Gouw JA, Hansel A, Jefferson A, Kley D, de Laat ATJ, Lal S, Lawrence MG, Lobert JM, Mayol-Bracero OL, Mitra AP, Novakov T, Oltmans SJ, Prather KA, Reiner T, Rodhe H, Scheeren HA, Sikka D, Williams J (2001) The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 291(5506):1031–1036.  https://doi.org/10.1126/science.1057103CrossRefGoogle Scholar
  48. Lu Z, Streets DG, Zhang Q, Wang S (2012) A novel back-trajectory analysis of the origin of black carbon transported to the Himalayas and Tibetan Plateau during 1996–2010. Geophys Res Lett 39:L01809.  https://doi.org/10.1029/2011GL049903CrossRefGoogle Scholar
  49. Marinoni A, Cristofanelli P, Laj P, Duchi R, Calzolari F, Decesari S, Sellegri K, Vuillermoz E, Verza GP, Villani P, Bonasoni P (2010) Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas). Atmos Chem Phys 10:8551–8562.  https://doi.org/10.5194/acp-10-8551-2010CrossRefGoogle Scholar
  50. Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253CrossRefGoogle Scholar
  51. Menon S, Koch D, Beig G, Sahu S, Fasullo J, Orlikowski D (2010) Black carbon aerosols and the third polar ice cap. Atmos Chem Phys 10:4559–4571.  https://doi.org/10.5194/acp-10-4559-2010CrossRefGoogle Scholar
  52. Monahan EC (1986) The ocean as a source for atmospheric particles. In: Buat-Menard P (ed) The role of air-sea exchange in geochemical cycling. D. Reidel, Hingham, MA, pp 129–163CrossRefGoogle Scholar
  53. Moorthy et al (1999) Aerosol climatology over India. 1-ISRO GBP MWR network and database. ISRO/GBP, SR-03-99Google Scholar
  54. Moorthy KK, Babu SS, Sunilkumar SV, Gupta PK, Gera BS (2004) Altitude profiles of aerosol BC, derived from aircraft measurements over an inland urban location in India. Geophys Res Lett 31:L22103.  https://doi.org/10.1029/2004gl021336
  55. Moorthy KK, Satheesh SK, Babu SS, Dutt CBS (2008) Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB): an overview. J Earth Syst Sci 117:243–262CrossRefGoogle Scholar
  56. Moorthy KK, Babu SS, Manoj MR, Satheesh SK (2013a) Buildup of aerosols over the Indian region. Geophys Res Lett 40:1011–1014.  https://doi.org/10.1002/grl.50165CrossRefGoogle Scholar
  57. Moorthy KK, Beegum SN, Srivastava N, Satheesh SK, Chin M, Blond N, Babu SS, Singh S (2013b) Performance evaluation of chemistry transport models over India. Atmos Environ 71:210–225CrossRefGoogle Scholar
  58. Morys M, Mims FM III, Hagerup S, Anderson SE, Backer A, Kia J, Walkup T (2001) Design, calibration and performance of Microtops II hand-held ozone monitor and sun photometer. J Geophys Res 106:14573–14582CrossRefGoogle Scholar
  59. Myhre G, Stordal F, Restad K, Isaksen I (1998) Estimates of the direct radiative forcing due to sulfate and soot aerosols. Tellus Ser B 50:463–477CrossRefGoogle Scholar
  60. Nair VS, Solmon F, Giorgi F, Mariotti L, Babu SS, Moorthy KK (2012) Simulation of South Asian aerosols for regional climate studies. J Geophys Res 117:D04209.  https://doi.org/10.1029/2011JD016711CrossRefGoogle Scholar
  61. Naja M, Bhardwaj P, Singh N, Kumar P, Kumar R, Ojha N, Sagar R, Satheesh SK, Moorthy KK, Kotamarthi VR (2016) High-frequency vertical profiling of meteorological parameters using AMF1 facility during RAWEX–GVAX at ARIES Nainital. Curr Sci 111(1):132–140. ISSN 0011-3891CrossRefGoogle Scholar
  62. Omar AH, Winker DM, Vaughan MA, Hu Y, Trepte CR, Ferrare RA, Lee KP, Hostetler CA, Kittaka C, Rogers RR, Kuehn RE, Liu Z (2009) The CALIPSO automated aerosol classification and Lidar ratio selection algorithm. J Atmos Ocean Technol 26:1994–2014.  https://doi.org/10.1175/2009JTECHA1231.1CrossRefGoogle Scholar
  63. Pant P, Hegde P, Dumka UC, Sagar R, Satheesh SK, Moorthy KK, Saha A, Srivastava MK (2006) Aerosol characteristics at a high-altitude location in central Himalayas: optical properties and radiative forcing. J Geophys Res 111:D17206.  https://doi.org/10.1029/2005JD006768CrossRefGoogle Scholar
  64. Porch W, Chylek P, Dubey M, Massie S (2007) Trends in aerosol optical depth for cities in India. Atmos Environ 41:7524–7532.  https://doi.org/10.1016/j.atmosenv.2007.05.055CrossRefGoogle Scholar
  65. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:1002.  https://doi.org/10.1029/2000RG000095CrossRefGoogle Scholar
  66. Prospero JM, Charlson RJ, Mohnen B, Jaencke R, Delany AC, Mayers J, Zoller W, Rahn K (1983) The atmospheric aerosol system—an overview. Rev Geophys 21:1607–1629CrossRefGoogle Scholar
  67. Pruppacher HR, Klett JD (1978) Microphysics of clouds and precipitation. D. Reidel Publishing Company, HollandCrossRefGoogle Scholar
  68. Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001a) Aerosols, climate and the hydrological cycle. Science 294:2119–2124CrossRefGoogle Scholar
  69. Ramanathan V et al (2001b) Indian Ocean experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J Geophys Res 106:28371–28398CrossRefGoogle Scholar
  70. Ramanathan V, Raman MV, Roberts G, Kim D, Corrigan C, Chung C, Winker D (2007) Warming trends in Asia amplified by brown cloud solar absorption. Nature 448:575–578.  https://doi.org/10.1038/nature06019CrossRefGoogle Scholar
  71. Sagar R, Kumar B, Dumka UC, Moorthy KK, Pant P (2004) Characteristics of aerosol optical depths over Manora Peak: a high altitude station in the central Himalayas. J Geophys Res 109:D06207.  https://doi.org/10.1029/2003JD003954CrossRefGoogle Scholar
  72. Satheesh SK, Ramanathan V (2000) Large differences in the tropical aerosol forcing at the top of the atmosphere and Earth’s surface. Nature 405:60–63.  https://doi.org/10.1038/35011039CrossRefGoogle Scholar
  73. Satheesh SK et al (2008) Climate implications of large warming by elevated aerosol over India. Geophys Res Lett 35:L19809.  https://doi.org/10.1029/2008GL034944CrossRefGoogle Scholar
  74. Saxena P, Hildemann LM (1996) Water soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. J Atmos Chem 24:57–109CrossRefGoogle Scholar
  75. Seinfeld JH et al (2004) ACE-Asia—regional climatic and atmospheric chemical effects of Asian dust and pollution. Bull Am Meteorol Soc 85(3):367–380CrossRefGoogle Scholar
  76. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics—from air pollution to climate change. Wiley, New York, USACrossRefGoogle Scholar
  77. Sikka DR (1997) Desert climate and its dynamics. Curr Sci India 72:35–46Google Scholar
  78. Singh RP, Dey S, Tripathi SN, Tare V (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res 109:D23206.  https://doi.org/10.1029/2004JD004966CrossRefGoogle Scholar
  79. Skamarock WC et al (2008) A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, Natl. Cent. for Atmos. Res., Boulder, CO, pp 125Google Scholar
  80. Smirnov A, Villevalde Y, O’Neill NT, Royer A, Tarussov A (1995) Aerosol optical depth over the oceans: analysis in terms of synoptic air mass types. J Geophys Res 16:639–650, 24513Google Scholar
  81. Srivastava AK, Ram K, Pant P, Hegde P, Joshi H (2012) Black carbon aerosols over Manora Peak in the Indian Himalayan foothills: implications for climate forcing. Environ Res Lett 7:014002.  https://doi.org/10.1088/1748-9326/7/1/014002CrossRefGoogle Scholar
  82. Stephens GL et al (2002) The CloudSat mission and the A-Train: a new dimension of space-based observations of clouds and precipitation. Bull Am Meteorol Soc 83:1771–1790CrossRefGoogle Scholar
  83. Stohl A (1996) Trajectory statistics—a new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmos Environ 30(4):579–587.  https://doi.org/10.1016/1352-2310(95)00314-2CrossRefGoogle Scholar
  84. Stohl A (2006) Characteristics of atmospheric transport into the Arctic troposphere. J Geophys Res 111(11):D11306.  https://doi.org/10.1029/2005JD006888CrossRefGoogle Scholar
  85. Streets DG, Yan F, Chin M, Diehl T, Mahowald N, Schultz M, Wild M, Wu Y, Yu C (2009) Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006. J Geophys Res 114:D00D18.  https://doi.org/10.1029/2008jd011624
  86. Weingartner E, Saathof H, Schnaiter M, Streit N, Bitnar B, Baltensperger U (2003) Absorption of light by soot particles: determination of the absorption co-efficient by means of Aethalometers. J Aerosol Sci 34(10):1445–1463.  https://doi.org/10.1016/S0021-8502(03)00359-8CrossRefGoogle Scholar
  87. Whitby KT (1978) The physical characteristics of sulfur aerosols. Atmos Environ 12:135–159CrossRefGoogle Scholar
  88. Winker DM, Vaughan MA, Omar AH, Hu Y, Powell KA, Liu Z, Hunt WH, Young SA (2009) Overview of the CALIPSO mission and CALIOP data processing algorithms. J Atmos Ocean Technol 26:2310–2323.  https://doi.org/10.1175/2009JTECHA1281.1CrossRefGoogle Scholar
  89. Young SA, Vaughan MA (2009) The retrieval of profiles of particulate extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: algorithm description. J Atmos Ocean Technol 26:1105–1119.  https://doi.org/10.1175/2008JTECHA1221.1CrossRefGoogle Scholar
  90. Zhang J, Reid JS (2010) A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products. Atmos Chem Phys 10(22):10949–10963.  https://doi.org/10.5194/acp-10-10949-2010CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Indian Institute of TechnologyKanpurIndia
  2. 2.Aryabhatta Research Institute of Observational SciencesNainitalIndia

Personalised recommendations