Advertisement

Hydrothermal Carbonization—A Sustainable Approach to Deal with the Challenges in Sewage Sludge Management

  • Vicky Shettigondahalli EkanthaluEmail author
  • Gert Morscheck
  • Satyanarayana Narra
  • Michael Nelles
Chapter
  • 24 Downloads

Abstract

Hydrothermal carbonization (HTC) is emerging as a most promising technology to effectively manage the extensively produced sewage sludge by converting it into high energy density bio-coal and bio-products. The main objective of the current review is to briefly compare the existing sewage sludge management solutions with the HTC process. Also, this review clearly explains the effectiveness of HTC in terms of environmental sustainability, considering the existing legislation (European and national level (Germany)). Further, an attempt is made to explain the eco-innovative strategies of HTC to fulfill the principle concept of the circular economy “from waste to resource” as the most suitable waste management approach. The importance of sewage sludge as a valuable resource of matter and energy has been highly appreciated. Besides updating the knowledge on the effectiveness of HTC as a technology to manage sewage sludge, this review briefly summarizes economically the feasibility and specifies some of the most appropriate future research prospects for the technical development of HTC in sewage sludge management.

Keywords

Hydrothermal carbonization Sewage sludge Sewage sludge management Environment sustainability 

References

  1. AbfKlärV. (2017). Verordnung über die Verwertung von Klärschlamm, Klärschlammgemisch und Klärschlammkompost. Report from German sewage sludge ordinance.Google Scholar
  2. AVA-CO2. (2012a). AVA-CO2 Schweiz AG. December, 2012. Accessed August 28, 2018. http://duene-greifswald.de/doc/rrr2013/talks/HTC.pdf.
  3. AVA-CO2. (2012b). Business Wire, Inc. Business wire, a Berkshire Hathaway company. October, 2012. Accessed August 27, 2018. https://www.businesswire.com/news/home/20121122005340/en/HTC-1-Industrial-Plant-hydrothermal-carbonization-Worldwide-AVA-CO2.
  4. Burton, F. L., Tchobanoglous, G., Tsuchihashi, R., Stensel, H. D., Metcalf, & Eddy. (2013). Wastewater engineering: Treatment and resource recovery. McGraw-Hill’s.Google Scholar
  5. Crocker, M. (2010). Thermo chemical conversion of biomass to liquid fuels and chemicals.Google Scholar
  6. (Destatis), Statistisches Bundesamt. (2018). Abwasserbehandlung – Klärschlamm. Tabellenband 2015/2016, Destatis. https://www.destatis.de/DE/Publikationen.
  7. EU Commission, European. (1986). On the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture (86/278/EEC). Council Directive, Official Journal of the European Communities. Accessed 08 29, 2018. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1986:181:0006:0012:EN:PDF.
  8. He, C., Giannis, G., & Wang, J. Y. (2013). Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior. Applied Energy 111, 257–266.Google Scholar
  9. HTCycle. (2017, November 20). Accessed August 28, 2018. https://htcycle.ag/en/article/official-launch-of-the-htc-plant-in-relzow_10.
  10. Kacprzak, M., Neczaj, E., Fijałkowski, K., Grobelak, A., Grosser, A., Worwag, M., et al. (2017). Sewage sludge disposal strategies for sustainable development. Environmental Research, 156, 39–46.CrossRefGoogle Scholar
  11. KrWG. (2012). The Waste Management Act (KrWG - Closed Substance Cycle Act) - Gesetz zur Förderung der Kreislaufwirtschaft und Sicherung der umweltverträglichen Bewirtschaftung von Abfällen (Kreislaufwirtschaftsgesetz - KrWG).” The Waste Management Act. https://www.saarland.de/dokumente/thema_abfall/KrWG.pdf.
  12. Libra, J. A., Ro, K. S., Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., Titirici, M. M., et al. (2011). Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1).  https://doi.org/10.4155/bfs.10.81.
  13. Saetea, P., & Tippayawong, N. (2013). Recovery of value-added products from hydrothermalc arbonization of sewage sludge. Hindawi Publishing Corporation.  https://doi.org/10.1155/2013/268947.CrossRefGoogle Scholar
  14. Sirén Ehrnström, M. (2016). Recovery of phosphorus from HTC converted municipal sewage sludge. Masters Thesis, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology.Google Scholar
  15. Stucki, M., Eymann, L., Gerner, G., Hartmann, F., Wanner, R., & Krebs, R. (2015). Hydrothermal carbonization of sewage sludge on industrial scale: energy efficiency, environmental effects and combustion. Journal of Energy Challenges and Mechanics, 2.Google Scholar
  16. Sun, X. H., Sumida, H., Yoshikawa, K. (2013). Effects of hydrothermal process on the nutrient release of sewage sludge. International Journal of Water Resource, 3(2).  https://doi.org/10.4172/2252-5211.1000124.
  17. vom Eyser, C., Palmu, K., Schmidt, T. C., & Tuerk, J. (2015). Pharmaceutical load in sewage sludge and biochar produced by hydrothermal carbonization. Science of Total Environment, 180–186.Google Scholar
  18. Ye, Y., Ngo, H. H., Guo, W., Liu, Y., Li, J., Liu, Y., Zhang, X., & Jia, H. (2017). Insight into chemical phosphate recovery from municipal wastewater. Science of the Total Environment, 159–171.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Vicky Shettigondahalli Ekanthalu
    • 1
    Email author
  • Gert Morscheck
    • 1
  • Satyanarayana Narra
    • 1
    • 2
  • Michael Nelles
    • 1
    • 2
  1. 1.Faculty of Agriculture and Environmental ScienceUniversität RostockRostockGermany
  2. 2.Deutsches Biomasseforschungszentrum (DBFZ)LeipzigGermany

Personalised recommendations