Advertisement

Fuzzy Gain Scheduler Based Path Tracking on Image Plane for XY/Z Partitioned IBVS System

  • Jie ZhongEmail author
  • Tao Wang
  • Lianglun Cheng
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 582)

Abstract

Image based visual servo (IBVS) system is meaningful in industrial scene. Path tracking on image plane in IBVS system is an important research topic. In this paper, we propose an XY/Z motion partitioned IBVS system, in which a fuzzy gain scheduler is combined to enable the feature points to track specified path on the image plane. The simulation results prove the effectiveness of our method, and the tracking errors are limited in 5 pixels.

Keywords

XY/Z partitioned IBVS Path tracking Fuzzy gain scheduling 

Notes

Acknowledgements

Major projects of science and technology plan of Guangdong Province (2015B090922013, 2013B011302007).

References

  1. 1.
    Hill, J., Park, W.T.: Real time control of a robot with a mobile camera. In: Proceedings of the 9th ISIR, pp. 233–246. Washington D.C. (1979)Google Scholar
  2. 2.
    François, C., Hutchinson, S.: Visual servo control, part I: basic approaches. J. IEEE Robot. Autom. Mag. 13, 82–90 (2006)CrossRefGoogle Scholar
  3. 3.
    Xu, D., Lu, J., Wang, P., et al.: Partially decoupled image-based visual servoing using different sensitive features. J. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2233–2243 (2017)CrossRefGoogle Scholar
  4. 4.
    Li, S., Ghasemi, A., Xie, W., et al.: An enhanced IBVS controller of a 6DOF manipulator using hybrid PD-SMC method. In: 43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 2852–2857. IEEE Press, Beijing (2017)Google Scholar
  5. 5.
    Chaumette, F.: Potential problems of unstability and divergence in image-based and position-based visual servoing. In: European Control Conference (ECC), pp. 4549–4554. Karlsruhe (1999)Google Scholar
  6. 6.
    Peter, I.C., Seth, A.H.: A new partitioned approach to image-based visual servo control. J. IEEE Trans. Robot. Autom. 17, 507–515 (2001)CrossRefGoogle Scholar
  7. 7.
    Mezouar, Y., Chaumette, F.: Optimal camera trajectory with image-based control. J. Int. J. Robot. Res. 22(10–11), 781–803 (2003)CrossRefGoogle Scholar
  8. 8.
    Liang, X.W., Huang, X.H., Min, W.: Uncalibrated path planning in the image space for the fixed camera configuration. J. Acta Automatica Sinica. 39(6), 759–769 (2013)CrossRefGoogle Scholar
  9. 9.
    Chesi, G., Hung, Y.S.: Global path-planning for constrained and optimal visual servoing. J. IEEE Trans. Robot. 23(5), 1050–1060 (2007)CrossRefGoogle Scholar
  10. 10.
    Masoud, S., Martin, J.: Uncalibrated visual servoing using a biased Newton method for on-line singularity detection and avoidance. In: International Conference on Intelligent Robots and Systems. IEEE Press, Canada (2005)Google Scholar
  11. 11.
    Edson, B.M.C., Ginalber, L.O.S.: Fuzzy gain scheduling design based on multiobjective particle swarm optimization. In: Latin America Congress on Computational Intelligence (LA-CCI). IEEE Press, Curitiba (2015)Google Scholar
  12. 12.
    Jang, J.S.R., Gulley, N.: Gain scheduling based fuzzy controller design. In: The North American Fuzzy Information Processing Society Biannual Conference, pp. 101–105. IEEE Press, San Antonio (1994)Google Scholar
  13. 13.
    Zhao, J., Wertz, V., Gorez, R.: Fuzzy gain scheduling controllers based on fuzzy models. In: 5th International Fuzzy Systems, pp. 1670–1676. IEEE Press, New Orleans (1996)Google Scholar
  14. 14.
    Boumehraz, M., Benmahammed, K.: Non-linear systems control via fuzzy models: a multicontroller approach. J. Int. J. Model. Ident. Control 2(1), 16 (2007)CrossRefGoogle Scholar
  15. 15.
    Software for robotics, vision and other things. http://petercorke.com

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Automation, Guangdong University of TechnologyGuangzhouChina

Personalised recommendations