Design of Wireless Body Area Network with Motion Sensors Using New Materials

  • Guodong WangEmail author
  • Yanxiao ZhaoEmail author
  • Yichun Ding
  • Jack Yang
  • Zhengtao Zhu
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 582)


Motion detection plays a critical role in wireless body area networks (WBANs) to facilitate patients for physical rehabilitation after an injury or illness. In this paper, we develop motion sensors with new materials and apply these new sensors to monitor motions of fingers as a demonstration. The new materials are low-cost active materials for motion sensors with high compressibility and sensitivity. We design and implement a flexible two-tier WBAN system to remotely monitor and display the motion information of fingers. The system is composed of wireless sensor nodes, wireless receiver, database, Web server, and HMIs. System integration and performance demonstration are conducted. Results show that the proposed WBAN system is capable of remotely detecting finger motions. Furthermore, the proposed WBAN system can be easily extended in other applications by adopting desired sensors.


Motion sensing WBAN XBee 


  1. 1.
    Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., Jamalipour, A.: Wireless body area networks: a survey. IEEE Commun. Surv. Tutor. 16(3), 1658–1686 (2014)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Hammock, M.L., Chortos, A., Tee, B.C.-K., Tok, J.B.-H., Bao, Z.: 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25(42), 5997–6038 (2013)CrossRefGoogle Scholar
  4. 4.
    Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D.N., Hata, K.: A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296–301 (2011)CrossRefGoogle Scholar
  5. 5.
    Wang, Y., Wang, L., Yang, T., Li, X., Zang, X., Zhu, M., Wang, K., Wu, D., Zhu, H.: Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24(29), 4666–4670 (2014)CrossRefGoogle Scholar
  6. 6.
    Hempel, M., Nezich, D., Kong, J., Hofmann, M.: A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 12(11), 5714–5718 (2012)CrossRefGoogle Scholar
  7. 7.
    Barlian, A.A., Park, W.-T., Mallon, J.R., Rastegar, A.J., Pruitt, B.L.: Review: Semiconductor piezoresistance for microsystems. Proc. IEEE Int. Conf. Electr. Electron. Eng. 97(3), 513–552 (2009)CrossRefGoogle Scholar
  8. 8.
    Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., Park, I.: Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014)CrossRefGoogle Scholar
  9. 9.
    Gong, S., Lai, D.T., Wang, Y., Yap, L.W., Si, K.J., Shi, Q., Jason, N.N., Sridhar, T., Uddin, H., Cheng, W.: Tattoolike polyaniline microparticle-doped gold nanowire patches as highly durable wearable sensors. ACS Appl. Mater. Interfaces 7, (35), 19700–19708 (2015)CrossRefGoogle Scholar
  10. 10.
    Roh, E., Hwang, B.-U., Kim, D., Kim, B.-Y., Lee, N.-E.: Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9(6), 6252–6261 (2015)CrossRefGoogle Scholar
  11. 11.
    Cavallari, R., Martelli, F., Rosini, R., Buratti, C., Verdone, R.: A survey on wireless body area networks: Technologies and design challenges. IEEE Commun. Surv. Tutor. 16(3), 1635–1657 (2014)CrossRefGoogle Scholar
  12. 12.
    Cao, H., Leung, V., Chow, C., Chan, H.: Enabling technologies for wireless body area networks: a survey and outlook. IEEE Commun. Mag. 47(12) (2009)CrossRefGoogle Scholar
  13. 13.
    Bisdikian, C.: An overview of the bluetooth wireless technology. IEEE Commun. Mag. 39(12), 86–94 (2001)CrossRefGoogle Scholar
  14. 14.
    Gutierrez, J.A., Naeve, M., Callaway, E., Bourgeois, M., Mitter, V., Heile, B.: Ieee 802.15. 4: a developing standard for low-power low-cost wireless personal area networks. IEEE Netw. 15(5), 12–19 (2001)CrossRefGoogle Scholar
  15. 15.
  16. 16.
  17. 17.
  18. 18.

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Computer ScienceMassachusetts College of Liberal ArtsNorth AdamsUSA
  2. 2.Department of Electrical and Computer EngineeringVirginia Commonwealth UniversityRichmondUSA
  3. 3.Department of Chemistry and Applied Biological SciencesSouth Dakota School of Mines and TechnologyRapid CityUSA

Personalised recommendations