Advertisement

A Multi-Center PSO Algorithm with Memory Ability and Its Application to the Online Modelling of an Underwater Vehicle Thruster

  • Gaofei Xu
  • Guanqun WangEmail author
  • Yiping Li
  • Xiaohui Wang
  • Xiangyu Qu
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 582)

Abstract

To improve the performance of Particle swarm optimization (PSO) in online optimization problems, a multi-center PSO algorithm with memory ability was proposed. Main strategies of the proposed algorithm include the initial population optimization based on historical optimal solution and improved chaos mapping and the multi-center collaborative search. To verify online optimization performance, the proposed algorithm is applied to the online modelling process of an underwater vehicle thruster to optimize the modeling parameters. Result proves the superiority of the proposed algorithm in online optimization problem.

Keywords

Online optimization PSO Tent mapping Multi-center collaborative search Online modeling Underwater vehicles 

Notes

Acknowledgements

This work is supported by the National key research and development program (2017YFC0305901), National Natural Science Foundation of China (91648204).

References

  1. 1.
    Evangelin, L.N., Fred, A.L.: Biometric authentication of physical characteristics recognition using artificial neural network with PSO algorithm. Int. J. Comput. Appl. Technol. 56(3), 219–229 (2017)CrossRefGoogle Scholar
  2. 2.
    Taeib, A., Chaari, A.: Tuning optimal PID controller. Int. J. Model. Ident. Control 23(2), 140–147 (2015)CrossRefGoogle Scholar
  3. 3.
    Wang, J., Qi, Y., Zhang, J.: Research on PSO algorithms for the rectangular packing problem. Int. J. Comput. Appl. Technol. 51(1), 15–22 (2015)CrossRefGoogle Scholar
  4. 4.
    Rawashdeh, A., Alkasassbeh, M., Al-Hawawreh, M.: An anomaly-based approach for DDoS attack detection in cloud environment. Int. J. Comput. Appl. Technol. 57(4), 312–324 (2018)CrossRefGoogle Scholar
  5. 5.
    Cai, Q., Gong, M., Ma, L., et al.: Greedy discrete particle swarm optimization for large-scale social network clustering. Inf. Sci. 316, 503–516 (2014)CrossRefGoogle Scholar
  6. 6.
    Ouali, M.A., Ghanai, M., Chafaa, K.: A new type-2 fuzzy modelling and identification for electrophysiological signals: a comparison between PSO, BBO, FA and GA approaches. Int. J. Model. Ident. Control 29(2), 163–184 (2018)CrossRefGoogle Scholar
  7. 7.
    Wang, F., Zhang, H., Li, K., et al.: A hybrid particle swarm optimization algorithm using adaptive learning strategy. Inf. Sci. 436 (2018)Google Scholar
  8. 8.
    Zhan, Z.H., Zhang, J., Li, Y., et al.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cyber. Part B: Cyber. 39(6), 1362–1381 (2009)CrossRefGoogle Scholar
  9. 9.
    Li, C., Yang, S., Nguyen, T.T.: A self-learning particle swarm optimizer for global optimization problems. IEEE Trans. Syst. Man Cyber. Part B: Cyber. 42(3), 627–646 (2012)CrossRefGoogle Scholar
  10. 10.
    Thangaraj, R., Pant, M., Abraham, A., et al.: Particle swarm optimization: Hybridization perspectives and experimental illustrations. Appl. Math. Comput. 217(12), 5208–5226 (2011)zbMATHGoogle Scholar
  11. 11.
    Bae, J., Hwang, C., Jun, D.: The uniform central limit theorem for the tent map. Stat. Probab. Lett. 81(10), 1021–1027 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Nie, R., Zhang, W.G., Li, G.W., et al.: Adaptive chaos hybrid multi-objective genetic algorithm based on the tent map. J. Beijing Univ. Aeronaut. Astronaut. 38(8), 1010–1016 (2012)Google Scholar
  13. 13.
    Zambrano-Bigiarini, M., Clerc, M., Rojas, R.: Standard particle swarm optimisation 2011 at CEC-2013: a baseline for future PSO improvements. In: 2013 IEEE Congress on Evolutionary Computation, pp. 2337–2344. IEEE Press, New York (2013)Google Scholar
  14. 14.
    Garcia-Tejeda, Y.V., Barrera-Figueroa, V.: Least squares fitting-polynomials for determining inflection points in adsorption isotherms of spray-dried acai juice (Euterpe oleracea Mart.) and soy sauce powders. Powder Technol. 342, 829–839 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Gaofei Xu
    • 1
    • 3
    • 4
  • Guanqun Wang
    • 1
    • 2
    Email author
  • Yiping Li
    • 1
    • 3
  • Xiaohui Wang
    • 1
    • 3
  • Xiangyu Qu
    • 1
    • 3
    • 4
  1. 1.State Key Lab of RoboticsShenyang Institute of Automation, CASShenyangChina
  2. 2.Chengde Petroleum CollegeChengdeChina
  3. 3.Institutes for Robotics and Intelligent Manufacturing, CASShenyangChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations