Advertisement

A Retinal Vessel Segmentation Algorithm with Convolutional Neural Network

  • Leiming Liu
  • Jiahao Li
  • Weicun Zhang
  • Dongmei FuEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 582)

Abstract

Accurate retinal vessel segmentation technology plays a critical role due to the changes in retinal blood vessels can be used to diagnose certain diseases. In this paper, we propose an application based on a new convolutional neural network for extracting retinal vessel particularly capillaries, which preserves image details as much as possible with different feature information. We evaluated this model on the DRIVE databases. Our results indicate that the network outperforms most competing approaches in term of accuracy, sensitivity, specificity, F1-score, the area under the ROC curve (AUC).

Keywords

Retinal vessel Fully convolution network Deep learning 

References

  1. 1.
    Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)CrossRefGoogle Scholar
  2. 2.
    Li, Q., Feng, B., Xie, L.P., et al.: A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 35(1), 109–118 (2016)CrossRefGoogle Scholar
  3. 3.
    Kassim, Y.M., Palaniappan, K.: Extracting retinal vascular networks using deep learning architecture. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1170–1174, IEEE (2017)Google Scholar
  4. 4.
    Long J, Shelhamer, E, Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  5. 5.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer, Cham (2015)Google Scholar
  6. 6.
    He, K., Zhang, X., Ren, S., et al.: Identity mappings in deep residual networks. In: European Conference on Computer Vision, pp. 630–645. Springer, Cham (2016)CrossRefGoogle Scholar
  7. 7.
    Chen, L.C., Papandreou, G., Schroff, F., et al.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
  8. 8.
    Chen, L.C., Zhu, Y., Papandreou, G., et al.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)CrossRefGoogle Scholar
  9. 9.
    Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)
  10. 10.
    Staal, J., Abrmoff, M.D., Niemeijer, M., et al.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)CrossRefGoogle Scholar
  11. 11.
    Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 38(1), 35–44 (2004)CrossRefGoogle Scholar
  12. 12.
    Chen, L.C., Papandreou, G., Kokkinos, I., et al.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)CrossRefGoogle Scholar
  13. 13.
    Marn, D., Aquino, A., Gegndez-Arias, M.E., et al.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–158 (2011)CrossRefGoogle Scholar
  14. 14.
    Fraz, M.M., Remagnino, P., Hoppe, A., et al.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)CrossRefGoogle Scholar
  15. 15.
    Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J. Biomed. Health Inform. 19(3), 1118–1128 (2015)Google Scholar
  16. 16.
    Dasgupta, A., Singh, S.: A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 248–251, IEEE (2017)Google Scholar
  17. 17.
    Hu, K., Zhang, Z., Niu, X., et al.: Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 309, 179–191 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Leiming Liu
    • 1
  • Jiahao Li
    • 1
  • Weicun Zhang
    • 1
  • Dongmei Fu
    • 1
    Email author
  1. 1.School of Automation and Electrical EngineeringUniversity of Science and Technology BeijingHaidian District, BeijingChina

Personalised recommendations