Advertisement

Nonlinear Observer Based Fault Diagnosis for an Innovative Intensified Heat-Exchanger/Reactor

  • Xue Han
  • Zetao LiEmail author
  • Boutaib Dahhou
  • Michel Cabassud
  • Menglin He
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 582)

Abstract

This paper describes an application of a fault detection and isolation (FDI) scheme for an intensified Heat-exchanger (HEX)/Reactor, where the exothermic chemical reaction of sodium thiosulfate oxidation by hydrogen peroxide is performed. To achieve this, precise estimation of all states of HEX/Reactor, including temperatures and concentrations of different reactants, as well as process fault detection and isolation is completed by a high gain observer. Then, process fault identification is achieved by several banks of interval filters. Finally, an intensified HEX/reactor is used to validate the effectiveness of the proposed strategy. Simulation results are shown to illustrate the performance of the algorithm presented.

Keywords

Fault diagnosis Fault identification High gain observer Parameter interval filter HEX/reactor 

Notes

Acknowledgements

This work was supported by China Scholarship Council (CSC); the National Nature Science Foundation of China under Grant 61963009; the Department of Science and Technology of Guizhou (grand numbers [2015]4014, [2015]11, [2016]2302, [2019]2154); and the Department of Education of Guizhou (grand numbers ZDXK [2015]8).

References

  1. 1.
    Anxionnaz, Z., Cabassud, M., Gourdon, C., Tochon, P.: Heat exchanger/reactors (HEX reactors): concepts, technologies: state-of-the-art. J. Chem. Eng. Process Process Intensif. 47(12), 2029–2050 (2008)CrossRefGoogle Scholar
  2. 2.
    Benaïssa, W., Gabas, N., Cabassud, M., Carson, D., Elgue, S., Demissy, M.: Evaluation of an intensified continuous heat-exchanger reactor for inherently safer characteristics. J. Loss Prev. Process Ind. 21(5), 528–536 (2008)CrossRefGoogle Scholar
  3. 3.
    Gertler, J.J.: Survey of model-based failure detection and isolation in complex plants. J. IEEE Control Syst. Mag. (1988)Google Scholar
  4. 4.
    Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy a survey and some new results. J. Autom. 26(3), 459–474 (1990)CrossRefGoogle Scholar
  5. 5.
    Frank, P.M.: Analytical and qualitative model-based fault diagnosis—a survey and some new results. Eur. J. Control. 2, 6–28 (1996)CrossRefGoogle Scholar
  6. 6.
    Chiang, L.H., Russell, E.L., Braatz, R.D.: Fault diagnosis in chemical processes using fisher discriminant analysis, discriminant partial least squares, and principal component analysis. 243–252 (2000)Google Scholar
  7. 7.
    Qin, S.J., Zheng,Y.: Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures. 59(2), 496–504 (2013)Google Scholar
  8. 8.
    Himmelblau, M.D.: Applications of artificial neural networks in chemical engineering. 17(4), 373–392 (2000)Google Scholar
  9. 9.
    Li, Z., Dahhou, B., Zhang, B., Cabassud, M.: Actuator gain fault diagnosis for heat-exchanger/reactor. In: Chinese Automation Congress 2019 (CAC). pp. 940–945 (2015)Google Scholar
  10. 10.
    Caccavale, F., Pierri, F., Iamarino, M., Tufano, V.: An integrated approach to fault diagnosis for a class of chemical batch processes. J. Process Control. 19(5), 827–841 (2009)CrossRefGoogle Scholar
  11. 11.
    Escobar, R.F., Astorga-Zaragoza, C.M., Tllez-Anguiano, A.C., Jurez-Romero, D., Hernndez, J.A., Guerrero-Ramrez, G.V.: Sensor fault detection and isolation via high-gain observers: application to a double-pipe heat exchanger. ISA Trans. 50(3), 480–486 (2011)CrossRefGoogle Scholar
  12. 12.
    Zhang, M., Li, Z., Cabassud, M., Dahhou, B.: An integrated FDD approach for an intensified HEX/Reactor. J. Control Sci. Eng. 2018 (2018)Google Scholar
  13. 13.
    Shoja-Majidabad, S., Zafari, Y.: Robust flux observer and robust block controller design for interior permanent magnet synchronous motor under demagnetisation fault. Int. J. Model. Identif. Control. 30(3), 206–218 (2018)CrossRefGoogle Scholar
  14. 14.
    Li, Z., Dahhou, B.: A new fault isolation and identification method for nonlinear dynamic systems: application to a fermentation process. Appl. Math. Model. 32(12), 2806–2830 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, Z., Dahhou, B.: Parameter intervals used for fault isolation in non-linear dynamic systems. Int. J. Model. Identif. Control. 1(3), 215–229 (2006)CrossRefGoogle Scholar
  16. 16.
    Zhang, M.: Root cause analysis of actuator fault based on invertibility of interconnected system. Int. J. Model. Identif. Control. 27(4), 256–270 (2017)CrossRefGoogle Scholar
  17. 17.
    Zavala-Río, A., Santiesteban-Cos, R.: Reliable compartmental models for double-pipe heat exchangers: an analytical study. J. Appl. Math. Model. 31(9), 1739–1752 (2007)CrossRefGoogle Scholar
  18. 18.
    Weyer, E., Szederkényi, G., Hangos, K.: Grey box fault detection of heat exchangers. J. Control Eng. Pract. 8(2), 121–131 (2000)CrossRefGoogle Scholar
  19. 19.
    Pierri, F., Paviglianiti, G., Caccavale, F., Mattei, M.: Observer-based sensor fault detection and isolation for chemical batch reactors. 21, 1204–1216 (2008)Google Scholar
  20. 20.
    Théron, F., Anxionnaz-Minvielle, Z., Cabassud, M., Gourdon, C., Tochon, P.: Characterization of the performances of an innovative heat-exchanger/reactor. J. Chem. Eng. Process. Process Intensif. 82, 30–41 (2014)CrossRefGoogle Scholar
  21. 21.
    Deza, F., Busvelle, E., Gauthier, J.P., Rakotopara, D.: High gain estimation for nonlinear systems. J. Syst. Control Lett. 18(4), 295–299 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Xue Han
    • 1
    • 2
  • Zetao Li
    • 1
    Email author
  • Boutaib Dahhou
    • 2
  • Michel Cabassud
    • 3
  • Menglin He
    • 1
    • 2
  1. 1.Electrical Engineering CollegeGuizhou UniversityGuiyangChina
  2. 2.LAAS-CNRS, Université de Toulouse, CNRS, INSA, UPSToulouseFrance
  3. 3.Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS/INPT/UPSToulouseFrance

Personalised recommendations