Advertisement

Unbalance Suppression for Active Magnetic Bearing Rotor System Based on Disturbance Observer

  • Zhuangzhuang Yue
  • Huimin OuyangEmail author
  • Guangming Zhang
  • Lei Mei
  • Xin Deng
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 582)

Abstract

Aiming at the problem of co-frequency disturbance caused by mass imbalance in the AMB system, a dynamics model is established firstly, and then a composite controller based on the model is proposed, which combines a proportional differential (PD) and a disturbance observer (DOB). Finally, the simulation verified that the proposed method can have good robust control performance under the conditions of constant speed.

Keywords

Active magnetic bearing Disturbance observer Unbalance suppression 

Notes

Acknowledgements

Project Supported by the Key Research and Development Project of Jiangsu Province (BE2017164).

References

  1. 1.
    Schweitzer, G., Maslen, E.H.: Magnetic Bearings: Theory, Design, and Application to Rotating Machinery. Springer, New York, NY, USA (2009)Google Scholar
  2. 2.
    Abrahamson, J., Hedlund, M., Kamf, T., Bernhoff, H.: High-speed kinetic energy buffer: optimization of composite shell and magnetic bearings. IEEE Trans. Industr. Electron. 61(6), 3012–3021 (2014)CrossRefGoogle Scholar
  3. 3.
    Schuhmann, T., Hofmann, W., Werner, R.: Improving Operational performance of active magnetic bearings using Kalman filter and state feedback control. IEEE Trans. Industr. Electron. 59(2), 821–829 (2012)CrossRefGoogle Scholar
  4. 4.
    Yoon, S.Y., Di, L., Lin, Z.L.: Unbalance compensation for AMB systems with input delay: an output regulation approach. Control Eng. Pract. 46, 166–175 (2016)CrossRefGoogle Scholar
  5. 5.
    Mao, C., Zhu, C.: Vibration control for active magnetic bearing rotor system of high-speed flywheel energy storage system in a wide range of speed. In: 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, pp. 1–6 (2016)Google Scholar
  6. 6.
    Kejian, J., Changsheng, Z., Liangliang, C.: Unbalance compensation by recursive seeking unbalance mass position in active magnetic bearing-rotor system. IEEE Trans. Industr. Electron. 62(9), 5655–5664 (2015)CrossRefGoogle Scholar
  7. 7.
    Chuan, M., Changsheng, Z.: Unbalance compensation for active magnetic bearing rotor system using a variable step size real-time iterative seeking algorithm. IEEE Trans. Industr. Electron. 65(5), 4177–4186 (2018)CrossRefGoogle Scholar
  8. 8.
    Peng, C., Fang, J., Xu, X.: Mismatched disturbance rejection control for voltage-controlled active magnetic bearing via state-space disturbance observer. IEEE Trans. Power Electron. 30(5), 2753–2762 (2015)CrossRefGoogle Scholar
  9. 9.
    Fekry, M., Mohamed, A.M., Fanni, M.: Robust Q-parametrisation control for nonlinear magnetic bearing systems with imbalance based on TSK fuzzy model. IJMIC 29(3), 195–208 (2018)CrossRefGoogle Scholar
  10. 10.
    Chen, Q., Liu, G., Han, B.: Suppression of imbalance vibration in AMB-rotor systems using adaptive frequency estimator. IEEE Trans. Industr. Electron. 62(12), 7696–7705 (2015)CrossRefGoogle Scholar
  11. 11.
    Zheng, S., Han, B., Feng, R., Jiang, Y.: Vibration suppression control for AMB-supported motor driveline system using synchronous rotating frame transformation. IEEE Trans. Industr. Electron. 62(9), 5700–5708 (2015)CrossRefGoogle Scholar
  12. 12.
    Gao, H., Xu, L., Zhu, Y.: Unbalance vibratory displacement compensation for active magnetic bearings. Chin. J. Mech. Eng. 26(1), 95–103 (2013)CrossRefGoogle Scholar
  13. 13.
    He, Y., Shi, L., Shi, Z., Sun, Z.: Unbalance compensation of a full-scale test rig designed for HTR-10GT: a frequency-domain approach based on iterative learning control. Sci. Technol. Nucl. Install. 2017 (2017 Jan)CrossRefGoogle Scholar
  14. 14.
    Husain, A.R., Ahmad, M.N., Yatim, A.H.M.: Modeling of a horizontal active magnetic bearing system with uncertainties in deterministic form. In: First Asia International Conference on Modelling & Simulation (AMS’07), Phuket, pp. 42–47 (2007)Google Scholar
  15. 15.
    Chen, S., Lin, S.: Imbalance compensation for an AMB system with adaptive immersion & invariance control. In: The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, pp. 1530–1534 (2015)Google Scholar
  16. 16.
    Huo, X., Feng, S., Liu, X., Zhao, Q.: Modelling of aerodynamic interference of three-DOF Gyro Wheel rotor. IJMIC 29(1) 29(1), 53–63 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Zhuangzhuang Yue
    • 1
  • Huimin Ouyang
    • 1
    Email author
  • Guangming Zhang
    • 1
  • Lei Mei
    • 1
  • Xin Deng
    • 1
  1. 1.School College of Electrical Engineering and Control ScienceNanjingChina

Personalised recommendations