On Interconnected Observer Design for Nonlinear System

  • Mei Zhang
  • Ze-tao LiEmail author
  • Michel Cabassud
  • Boutaïeb Dahhou
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 582)


This paper investigates the possibility of decomposing a control system into an interconnection of actuator and process subsystems; this allows monitoring the properties of the interconnected system globally and locally. For that, observer for the nonlinear interconnected system is studied. Specially, the interconnection between the two subsystems is assumed to be inaccessible to measurement. The aim is then to accurately estimate online the states vector of each subsystem, as well as the unknown interconnection. Numerical simulations confirm the effectiveness of the designed observer.


Interconnected system Unknown interconnection States estimation Left invertibility Actuator subsystem Process subsystem 



This work was supported by Science and Technology Foundation of Guizhou Province, China ([2016]1053), and Key Project of Science and Technology Foundation of Guizhou Province, China ([2016]2302). And [2017]5788.


  1. 1.
    Yang, J., Zhu, F., Yu, K., Bu, X.: Observer-based state estimation and unknown input reconstruction for nonlinear complex dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 20(3), 927–939 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Besançon, G., Hammouri, H.: On observer design for interconnected systems. J. Math. Syst. Estimation Control 8(3), 1–26 (1998)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Vijay, P., Tade, M.O., Ahmed, K., Utikar, R., Pareek, V.: Simultaneous estimation of states and inputs in a planar solid oxide fuel cell using nonlinear adaptive observer design. J. Power Sources 248, 1218–1233 (2014)CrossRefGoogle Scholar
  4. 4.
    Djeghali, N., Djennoune, S., Bettayeb, M., Ghanes, M., Barbot, J.P.: Observation and sliding mode observer for nonlinear fractional-order system with unknown input. ISA Trans. 63, 1–10 (2015)CrossRefGoogle Scholar
  5. 5.
    Farza, M., M’Saad, M., Menard, T., Fall, M.L., Gehan, O., Pigeon, E.: Simple cascade observer for a class of nonlinear systems with long output delays. IEEE Trans. Automat. Control 60, 3338–3343 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Keliris, C., Polycarpou, M.M., Parisini, T.: A robust nonlinear observer-based approach for distributed fault detection of input-output interconnected systems. Automatica 53, 408–415 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Sandberg, H., André, H., Johansson, K.H.: Distributed fault detection for interconnected second-order systems with applications to power networks consensus protocols in practice. In: First Workshop on Secure Control Systems (SCS), Stockholm (2010)Google Scholar
  8. 8.
    Grip, H.F., Saberi, A., Johansen, T.A.: Observers for interconnected nonlinear and linear systems. Automatica 48(7), 1339–1346 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dashkovskiy, S., Naujok, L.: Quasi-ISS/ISDS observers for interconnected systems and applications. Syst. Control Lett. 77, 11–21 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Antonio Susto, G., Krstic, M.: Control of PDE-ODE cascades with Neumann interconnections. J. Franklin Inst. 347(1), 284–314 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Théron, F., Anxionnaz-Minvielle, Z., Cabassud, M., Gourdon, C., Tochon, P.: Characterization of the performances of an innovative heat-exchanger/reactor. Chem. Eng. Process. Process Intensification 82, 30–41 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Mei Zhang
    • 1
  • Ze-tao Li
    • 1
    Email author
  • Michel Cabassud
    • 2
    • 3
  • Boutaïeb Dahhou
    • 4
    • 5
  1. 1.Electrical Engineering SchoolGuizhou UniversityGuiyangChina
  2. 2.CNRS, LGCToulouseFrance
  3. 3.Université de Toulouse, UPS, LGCToulouseFrance
  4. 4.CNRS, LAASToulouseFrance
  5. 5.Université de Toulouse, UPS, LAASToulouseFrance

Personalised recommendations