Management of Patient with Scoliosis

  • Monica S. Tandon
  • Aastha Dhingra
  • Vineeth Varma


Surgery for correction of pediatric scoliosis typically involves an extensive multilevel instrumented fusion of the spine and is associated with a risk of major blood loss, hemodynamic instability, increased transfusion requirements, neurological injury, postoperative pulmonary dysfunction, and positioning-related complications. Complexity of the surgery, as well as the incidence and severity of complications, is higher in patients with nonidiopathic scoliosis (e.g., neuromuscular scoliosis, congenital scoliosis) as compared to those with adolescent idiopathic scoliosis. Perioperatively, the neuroanesthetist takes several perioperative measures to decrease the incidence of these complications, including a comprehensive preoperative evaluation for detection of potential risk factors; preoperative optimization of modifiable risk factors such as cardiopulmonary dysfunction, anemia, and poor nutritional status; intraoperative administration of antifibrinolytics and “targeted blood pressure management” for reduction of intraoperative blood loss; implementation of “spinal cord protection measures” and multimodality neuromonitoring for preservation of the neurologic integrity; and meticulous postoperative care with a multimodal pain relief and an early mobilization strategy. The choice of anesthetic drugs for these surgeries is largely determined by their compatibility with neuroelectrophysiological monitoring. Patients with nonidiopathic scoliosis merit a more intensive and multidisciplinary approach, for a better clinical outcome.


Scoliosis Spine Spine fusion Anesthesia Complications Monitoring Neuromonitoring Restrictive lung defect Spinal cord protection Controlled hypotension Antifibrinolytics 


  1. 1.
    Saltikov JB, Weiss HR, Chockalingam N, et al. A comparison of patient-reported outcome measures following different treatment approaches for adolescents with severe idiopathic scoliosis: a systematic review. Asian Spine J. 2016;10(6):1170–94.CrossRefGoogle Scholar
  2. 2.
    Farady JA. Current principles in the nonoperative management of structural adolescent idiopathic scoliosis. Phys Ther. 1983;63(4):512–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Gambrall MA. Anesthetic implications for surgical correction of scoliosis. AANA J. 2007;75(4):277–85.PubMedGoogle Scholar
  4. 4.
    Negrini S, Donzelli S, Aulisa AG, et al. 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis Spinal Disord. 2018;13(1):3.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Yaman O, Dalbayrak S. Idiopathic scoliosis. Turk Neurosurg. 2014;24(5):646–57.PubMedGoogle Scholar
  6. 6.
    Scoliosis Research Society Terminology Committee. A glossary of scoliosis terms. Spine. 1976;1(3):57–8.Google Scholar
  7. 7.
    Gibson PR. Anaesthesia for correction of scoliosis in children. Anaesth Intensive Care. 2004;32:548–59. PubMed: 15675216.PubMedCrossRefGoogle Scholar
  8. 8.
    Dunn J, Henrikson NB, Morrison CC, et al. Screening for adolescent idiopathic scoliosis, evidence report and systematic review for the US preventive. JAMA. 2018;319(2):173–87.PubMedCrossRefGoogle Scholar
  9. 9.
    Bunnell WP. The natural history of idiopathic scoliosis before skeletal maturity. Spine. 1986;11:773–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Konieczny MR, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J Child Orthop. 2013;7(1):3–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Glover CD, Carling NP. Neuromonitoring for scoliosis surgery. Anesthesiol Clin. 2014;32:101–14.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Asher MA, Burton DC. Adolescent idiopathic scoliosis: natural history and long-term treatment effects. Scoliosis. 2006;1(1):2. Scholar
  13. 13.
    Robinson CM, McMaster MJ. Juvenile idiopathic scoliosis. Curve patterns and prognosis in one hundred and nine patients. J Bone Joint Surg Am. 1996;78(8):1140–8.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    McMaster M. Infantile idiopathic scoliosis: can it be prevented? J Bone Joint Surg Br. 1983;65:612–7.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Lloyd-Roberts GC, pilcher MF. Structural idiopathic scoliosis in infancy: a study of the natural history of 100 patients. J Bone Joint Surg Br. 1965;47:520–3.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ceballos T, Ferrer-Torrelles M, Castillo F, Fernandez-Paredes E. Prognosis in infantile idiopathic scoliosis. J Bone Joint Surg Am. 1980;62(6):863–75.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hodgkinson I, Bérard C, Chotel F, et al. Pelvic obliquity and scoliosis in non-ambulatory patients with cerebral palsy: a descriptive study of 234 patients over 15 years of age. Rev Chir Orthop Reparatrice Appar Mot. 2002;88:337–41.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Basu PS, Elsebaie H, Noordeen MH. Congenital spinal deformity: a comprehensive assessment at presentation. Spine (Phila Pa 1976). 2002;27:2255–9.CrossRefGoogle Scholar
  19. 19.
    Polly WD Jr, Larson Noel A. Pediatric and adult scoliosis. In: Ellenbogen RG, Abdulrauf SI, Sekhar LN, editors. Principles of neurosurgery. 3rd ed. Philadelphia: Elsevier Saunders; 2012. p. 497–508.Google Scholar
  20. 20.
    Lenke LG, Betz RR, Harms J, et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am. 2001;83:1169–81.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Grauers A, Einarsdottir E, Gerdhem P. Genetics and pathogenesis of idiopathic scoliosis. Scoliosis Spinal Disord. 2016;11:45.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Fadzan M, Saltikov JB. Etiological theories of adolescent idiopathic scoliosis: past and present. Open Orthop J. 2017;11(Suppl-9, M3):1466–89.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Newton Ede MM, Jones SW. Adolescent idiopathic scoliosis: evidence for intrinsic factors driving aetiology and progression. Int Orthop. 2016;40(10):2075–80.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Weinstein SL, Dolan LA, Spratt KF, Peterson KK, Spoonamore MJ, Ponseti IV. Health and function of patients with untreated idiopathic scoliosis: a 50-year natural history study. JAMA. 2003;289(5):559–67.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Negrini S, Grivas TB, Kotwicki T, Maruyama T, Rigo M, Weiss HR, et al. Why do we treat adolescent idiopathic scoliosis? What we want to obtain and to avoid for our patients. SOSORT 2005 consensus paper. Scoliosis. 2006;1:4.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Koumbourlis AC. Scoliosis and the respiratory system. Paediatr Respir Rev. 2006;7:152–60.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Saltikov JB, Turnbull D, Ng SY, et al. Management of spinal deformities and evidence of treatment effectiveness. Open Orthop J. 2017;11:1521–47.CrossRefGoogle Scholar
  28. 28.
    Lonstein JE, Carlson JM. The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am. 1984;66(7):1061–71. Scholar
  29. 29.
    Weinstein SL, Zavala DC, Ponseti IV. Idiopathic scoliosis: long-term follow-up and prognosis in untreated patients. J Bone Joint Surg Am. 1981;63(5):702–12. Scholar
  30. 30.
    Weinstein SL, Ponseti IV. Curve progression in idiopathic scoliosis. J Bone Joint Surg Am. 1983;65(4):447–55. Scholar
  31. 31.
    Tan KJ, Moe MM, Vaithinathan R, Wong HK. Curve progression in idiopathic scoliosis: follow-up study to skeletal maturity. Spine (Phila Pa 1976). 2009;34(7):697–700.CrossRefGoogle Scholar
  32. 32.
    Mehta MH. The rib-vertebra angle in the early diagnosis between resolving and progressive infantile scoliosis. J Bone Joint Surg Br. 1972;54(2):230–43.PubMedCrossRefGoogle Scholar
  33. 33.
    Reames DL, Smith JS, Fu KMG, Polly DW, Ames CP, Berven SH, et al. Complications in the surgical treatment of 19,360 cases of pediatric scoliosis: a review of the scoliosis research society morbidity and mortality database. Spine. 2011;36(18):1484–91. Scholar
  34. 34.
    Saito N, Ebara S, Ohotsuka K, et al. Natural history of scoliosis in spastic cerebral palsy. Lancet. 1998;351:1687–92. Scholar
  35. 35.
    Thometz JG, Simon SR. Progression of scoliosis after skeletal maturity in institutionalized adults who have cerebral palsy. J Bone Joint Surg Am. 1988;70:1290–6.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Tsiligiannis T, Grivas T. Pulmonary function in children with idiopathic scoliosis. Scoliosis. 2012;7:7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Johari J, Sharifudin MA, Rahman AA, et al. Relationship between pulmonary function and degree of spinal deformity, location of apical vertebrae and age among adolescent idiopathic scoliosis patients. Singap Med J. 2016;57(1):33–8. PubMed PMID: 26831315; PubMed Central PMCID: PMC4728701.CrossRefGoogle Scholar
  38. 38.
    Muirhead A, Conner AN. The assessment of lung function in children with scoliosis. J Bone Joint Surg Br. 1985;67-B:699–702.CrossRefGoogle Scholar
  39. 39.
    Kulkarni AH, Ambareesha M. Scoliosis and anesthetic considerations. Indian J Anaesth. 2007;51:486–95.Google Scholar
  40. 40.
    Hirshfield S, Rudner C, Nash CL Jr, et al. Incidence of mitral valve prolapse in adolescent scoliosis and thoracic hypokyphosis. Pediatrics. 1982;70:451.Google Scholar
  41. 41.
    Primiano FP Jr, Nussbaum E, Hirschfeld SS, Nash CL, Horowitz JG, Lough MD, et al. Early echocardiographic and pulmonary function findings in idiopathic scoliosis. J Pediatr Orthop. 1983;3:475–81.PubMedCrossRefGoogle Scholar
  42. 42.
    Entwistle MA, Patel D. Scoliosis in children. Cont Educ Anaesth Crit Care Pain. 2006;6:13–6.CrossRefGoogle Scholar
  43. 43.
    Johnston CE, Richards BS, Sucato DJ, Bridwell KH, Lenke LG, Erickson M. Correlation of preoperative deformity magnitude and pulmonary function tests in adolescent idiopathic scoliosis. Spine. 2011;36(14):1096–102.PubMedCrossRefGoogle Scholar
  44. 44.
    Newton PO, Faro FD, Gollogly S, Betz RR, Lenke LG, Lowe TG. Results of preoperative pulmonary function testing of adolescents with idiopathic scoliosis. A study of six hundred and thirty-one patients. J Bone Joint Surg Am. 2005;87(9):1937–46.PubMedCrossRefGoogle Scholar
  45. 45.
    Kearon C, Viviani GR, Kirkley A, Killian KJ. Factors determining pulmonary function in adolescent idiopathic thoracic scoliosis. Am Rev Respir Dis. 1993;148(2):288–94.PubMedCrossRefGoogle Scholar
  46. 46.
    Upadhyay SS, Mullaji AB, Luk KD, Leong JC. Evaluation of deformities and pulmonary function in adolescent idiopathic right thoracic scoliosis. Eur Spine J. 1995;4(5):274–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Branthwaite MA. Cardiorespiratory consequences of unfused idiopathic scoliosis. Br J Dis Chest. 1986;80(4):360–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Martínez-Llorens J, Ramírez M, et al. Muscle dysfunction and exercise limitation in adolescent idiopathic scoliosis. Eur Respir J. 2010;36(2):393–400.PubMedCrossRefGoogle Scholar
  49. 49.
    Lin MC, Liaw MY, Chen WJ, Cheng PT, Wong AM, Chiou WK. Pulmonary function and spinal characteristics: their relationships in persons with idiopathic and postpoliomyelitic scoliosis. Arch Phys Med Rehabil. 2001;823:335–41.CrossRefGoogle Scholar
  50. 50.
    Kurz LT, Mubarak SJ, Schultz P, Park SM, Leach J. Correlation of scoliosis and pulmonary function in Duchenne muscular dystrophy. J Pediatr Orthop. 1983;3:347–53.PubMedCrossRefGoogle Scholar
  51. 51.
    Smith AD, Koreska J, Moseley CF. Progression of scoliosis in Duchenne muscular dystrophy. J Bone Joint Surg Am. 1989;71:1066–74.PubMedCrossRefGoogle Scholar
  52. 52.
    Ames WA, Hayes JA, Crawford MW. The role of corticosteroids in Duchenne muscular dystrophy: a review for the anaesthetist. Paediatr Anaesth. 2005;15:3–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Eagle M, Baudouin SV, Chandler C, Giddings DR, Bullock R, Bushby K. Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul Disord. 2002;12:926–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Tarpada SP, Morris MT. Minimally invasive surgery in the treatment of adolescent idiopathic scoliosis: a literature review and meta-analysis. J Orthop. 2016;14(1):19–22. PubMed PMID: 27818581; PubMed Central PMCID: PMC5080743.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Newton PO, Marks M, Faro F, et al. Use of video-assisted thoracoscopic surgery to reduce perioperative morbidity in scoliosis surgery. Spine (Phila Pa 1976). 2003;28:S249–54.CrossRefGoogle Scholar
  56. 56.
    Olgun ZD, Yazici M. Posterior instrumentation and fusion. J Child Orthop. 2013;7(1):69–76. Scholar
  57. 57.
    de Kleuver M, Lewis SJ, Germscheid NM, et al. Optimal surgical care for adolescent idiopathic scoliosis: an international consensus. Eur Spine J. 2014;23:2603–18. Scholar
  58. 58.
    Muschik MT, Kimmich H, Demmel T. Comparison of anterior and posterior double-rod instrumentation for thoracic idiopathic scoliosis: results of 141 patients. Eur Spine J. 2006;15:1128–38.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Maruyama T, Takeshita K. Surgery for idiopathic scoliosis: currently applied techniques. Clin Med Pediatr. 2009;3:39–44.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    De la Garza Ramos R, Goodwin CR, Abu-Bonsrah N, et al. Patient and operative factors associated with complications following adolescent idiopathic scoliosis surgery: an analysis of 36,335 patients from the Nationwide Inpatient Sample. J Neurosurg Pediatr. 2016;25(6):730–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Koerner JD, Patel A, Zhao C, Schoenberg C, Mishra A, Vives MJ, et al. Blood loss during posterior spinal fusion for adolescent idiopathic scoliosis. Spine. 2014;39(18):1479–87.PubMedCrossRefGoogle Scholar
  62. 62.
    Fletcher ND, Marks MC, Asghar JK, Hwang SW, Sponseller PD, Harms Study Group, Newton PO. Development of consensus based best practice guidelines for perioperative management of blood loss in patients undergoing posterior spinal fusion for adolescent idiopathic scoliosis. Spine Deform. 2018;6(4):424–9. Scholar
  63. 63.
    Vitale MG, Skaggs DL, Pace GI, et al. Best practices in intraoperative neuromonitoring in spine deformity surgery: development of an intraoperative checklist to optimize response. Spine Deform. 2014;2:333–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Ialenti MN, Lonner BS, Verma K. Predicting operative blood loss during spinal fusion for adolescent idiopathic scoliosis. J Pediatr Orthop. 2013;33(4):372–6.CrossRefPubMedGoogle Scholar
  65. 65.
    Fletcher ND, Shourbaji N, Mitchell PM, Oswald TS, Devito DP, Bruce RW. Clinical and economic implications of early discharge following posterior spinal fusion for adolescent idiopathic scoliosis. J Child Orthop. 2014;8(3):257–63.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Fletcher ND, Andras LM, Lazarus DE, et al. Use of a novel pathway for early discharge was associated with a 48% shorter length of stay after posterior spinal fusion for adolescent idiopathic scoliosis. J Pediatr Orthop. 2017;37:92–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Yoshihara H, Yoneoka D. National trends in spinal fusion for pediatric patients with idiopathic scoliosis: demographics, blood transfusions, and in-hospital outcomes. Spine (Phila Pa 1976). 2014;39:1144–50.CrossRefGoogle Scholar
  68. 68.
    Yoshihara H, Yoneoka D. Predictors of allogeneic blood transfusion in spinal fusion for pediatric patients with idiopathic scoliosis in the United States, 2004-2009. Spine (Phila Pa 1976). 2014;39:1860–7.CrossRefGoogle Scholar
  69. 69.
    Kim HJ, Park HS, Jang MJ, et al. Predicting massive transfusion in adolescent idiopathic scoliosis patients undergoing corrective surgery: association of preoperative radiographic findings. Medicine (Baltimore). 2018;97(22):e10972.CrossRefGoogle Scholar
  70. 70.
    Coe JD, Arlet V, Donaldson W, et al. Complications in spinal fusion for adolescent idiopathic scoliosis in the new millennium. A report of the Scoliosis Research Society Morbidity and Mortality Committee. Spine (Phila Pa 1976). 2006;31(3):345–9.CrossRefGoogle Scholar
  71. 71.
    Murphy RF, Mooney JF 3rd. Complications following spine fusion for adolescent idiopathic scoliosis. Curr Rev Musculoskelet Med. 2016;9(4):462–9. Scholar
  72. 72.
    Borden TC, Bellaire LL, Fletcher ND. Improving perioperative care for adolescent idiopathic scoliosis patients: the impact of a multidisciplinary care approach. J Multidiscip Healthc. 2016;9:435–45. PubMed PMID: 27695340; PubMed Central PMCID: PMC5028162.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Vitale MG, Moore DW, Matsumoto H, et al. Risk factors for spinal cord injury during surgery for spinal deformity. J Bone Joint Surg Am. 2010;92:64–71.PubMedCrossRefGoogle Scholar
  74. 74.
    Devlin VJ, Schwartz DM. Intraoperative neurophysiologic monitoring during spinal surgery. J Am Acad Orthop Surg. 2007;15(9):549–60.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    DePasse JM, Palumbo MA, Haque M, Eberson CP, Daniels AH. Complications associated with prone positioning in elective spinal surgery. World J Orthop. 2015;6(3):351–9.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Practice Advisory for the Prevention of Perioperative Peripheral Neuropathies 2018: an updated report by the American Society of Anesthesiologists Task Force on Prevention of Perioperative Peripheral Neuropathies. Anesthesiology. 2018;128(1):11–26.
  77. 77.
    De la Garza-Ramos R, Samdani AF, Sponseller PD, Ain MC, Miller NR, Shaffrey CI, et al. Visual loss after corrective surgery for pediatric scoliosis: incidence and risk factors from a nationwide database. Spine J. 2016;16:516–22.PubMedCrossRefGoogle Scholar
  78. 78.
    Lao L, Weng X, Qiu G, Shen J. The role of preoperative pulmonary function tests in the surgical treatment of extremely severe scoliosis. J Orthop Surg Res. 2013;8:32.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Zhang JG, Wang W, Qiu GX, et al. The role of preoperative pulmonary function tests in the surgical treatment of scoliosis. Spine (Phila Pa 1976). 2005;30:218–21.CrossRefGoogle Scholar
  80. 80.
    Yuan N, Fraire JA, Margetis MM, Skaggs DL, Tolo VT, Keens TG. The effect of scoliosis surgery on lung function in the immediate postoperative period. Spine. 2005;30(19):2182–5.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Yaszay B, Jazayeri R, Lonner B. The effect of surgical approaches on pulmonary function in adolescent idiopathic scoliosis. J Spinal Disord Tech. 2009;22(4):278–83.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Yuan N, Skaggs DL, Dorey F, Keens TG. Preoperative predictors of prolonged postoperative mechanical ventilation in children following scoliosis repair. Pediatr Pulmonol. 2005;40:414–9.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Shapiro F, Sethna N. Blood loss in pediatric spine surgery. Eur Spine J. 2004;13(Suppl 1):S6–S17.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Cloake T, Gardner A. The management of scoliosis in children with cerebral palsy: a review. J Spine Surg. 2016;2(4):299–309. Scholar
  85. 85.
    Lipton GE, Miller F, Dabney KW, et al. Factors predicting postoperative complications following spinal fusions in children with cerebral palsy. J Spinal Disord. 1999;12:197–205.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Bradford DS, Heithoff KB, Cohen M. Intraspinal abnormalities and congenital spine deformities: a radiographic and MRI study. J Pediatr Orthop. 1991;11(1):36–41. Scholar
  87. 87.
    Miskovic A, Lumb AB. Postoperative pulmonary complications. Br J Anaesth. 2017;118:317–34.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Kafer ER. Respiratory and cardiovascular functions in scoliosis and the principles of anesthetic management. Anesthesiology. 1980;32:339–51.CrossRefGoogle Scholar
  89. 89.
    Wazeka AN, DiMaio MF, Boachie-Adjei O. Outcome of pediatric patients with severe restrictive lung disease following reconstructive spine surgery. Spine. 2004;29:528–34.PubMedCrossRefGoogle Scholar
  90. 90.
    Bach JR, Sabharwal S. High pulmonary risk scoliosis surgery: role of noninvasive ventilation and related techniques. J Spinal Disord Tech. 2005;18:527–30.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Laupacis A, Ergusson D. Erythropoetin to minimize perioperative blood transfusion. A systematic review of randamozed trials. The international study of Peri-Operative Transfusion (IPSOT) Investigators. Transfus Med. 1998;8:309–17.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Moran MM, Kroon D, Tredwell SJ, Wadsworth LD. The role of autologous blood transfusion in adolescents undergoing spinal surgery. Spine (Phila Pa 1976). 1995;20:532–6.CrossRefGoogle Scholar
  93. 93.
    Bess RS, Lenke LG, Bridwell KH, et al. Wasting of preoperatively donated autologous blood in the surgical treatment of adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2006;31:2375–80.CrossRefGoogle Scholar
  94. 94.
    Verma RR, Williamson JB, Dashti H, et al. Homologous blood transfusion is not required in surgery for adolescent idiopathic scoliosis. J Bone Joint Surg Br. 2006;88:1187–91.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Drvaric DM, Roberts JM, Burke SW, King AG, Kenneth FS. Gastroesophageal evaluation in totally involved cerebral palsy patients. J Pediatr Orthop. 1987;7:187–90.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Rappaport DI, Adelizzi-Delany J, Rogers KJ, et al. Outcomes and costs associated with hospitalist comanagement of medically complex children undergoing spinal fusion surgery. Hosp Pediatr. 2013;3(3):233–41.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Jevsevar DS, Karlin LI. The relationship between preoperative nutritional status and complications after an operation for scoliosis in patients who have cerebral palsy. J Bone Joint Surg Am. 1993;75:880–4.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Gurajala I, Ramachandran G, Iyengar R, Durga P. The preoperative and intraoperative risk factors for early postoperative mechanical ventilation after scoliosis surgery: a retrospective study. Indian J Anaesth. 2013;57:14–8. PMCID: PMC3658328; PubMed: 23716760.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Issac E, Menon G, Vasu BK, George M, Vasudevan A. Predictors of postoperative ventilation in scoliosis surgery: a retrospective analysis. Anesth Essays Res. 2018;12(2):407–11. Scholar
  100. 100.
    Mollmann M, Henning M, Liljenqvist U, Wenk M. A foam-cushion face mask and a see-through operation table: a new set-up for face protection and increased safety in prone position. Br J Anaesth. 2007;99(4):597–8. Scholar
  101. 101.
    Bowen RE, Gardner S, Scaduto AA, Eagan M, Beckstead J. Efficacy of intraoperative cell salvage systems in pediatric idiopathic scoliosis patients undergoing posterior spinal fusion with segmental spinal instrumentation. Spine (Phila Pa 1976). 2010;35(2):246–51.CrossRefGoogle Scholar
  102. 102.
    McNicol ED, Tzortzopoulou A, Schumann R, Carr DB, Kalra A. Antifibrinolytic agents for reducing blood loss in scoliosis surgery in children. Cochrane Database Syst Rev. 2016;(9):CD006883.
  103. 103.
    Dhawale AA, Shah SA, Sponseller PD, et al. Are antifibrinolytics helpful in decreasing blood loss and transfusions during spinal fusion surgery in children with cerebral palsy scoliosis? Spine (Phila Pa 1976). 2012;37:E549–55.CrossRefGoogle Scholar
  104. 104.
    Newton PO, Bastrom TP, Emans JB, et al. Antifibrinolytic agents reduce blood loss during pediatric vertebral column resection procedures. Spine (Phila Pa 1976). 2012;37:E1459–63.CrossRefGoogle Scholar
  105. 105.
    Sethna NF, Zurakowski D, Brustowicz RM, Bacsik J, Sullivan LJ, Shapiro F. Tranexamic acid reduces intraoperative blood loss in pediatric patients undergoing scoliosis surgery. Anesthesiology. 2005;102(4):727–32.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Verma K, Errico T, Diefenbach C, et al. The relative efficacy of antifibrinolytics in adolescent idiopathic scoliosis: a prospective randomized trial. J Bone Joint Surg Am. 2014;96(10):e80.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Grant JA, Howard J, Luntley J, Harder J, Aleissa S, Parsons D. Perioperative blood transfusion requirements in pediatric scoliosis surgery: the efficacy of tranexamic acid. J Pediatr Orthop. 2009;29(3):300–4.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Verma K, Lonner B, Dean L, Vecchione D, Lafage V. Reduction of mean arterial pressure at incision reduces operative blood loss in adolescent idiopathic scoliosis. Spine Deform. 2013;1(2):115–22.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Lawhon SM, Kahn IIIA, Crawford AH, et al. Controlled hypotensive anesthesia during spinal surgery: a retrospective study. Spine (Phila Pa 1976). 1984;9:450–3.CrossRefGoogle Scholar
  110. 110.
    Patel NJ, Patel BS, Paskin S, Laufer S. Induced moderate hypotensive anesthesia for spinal fusion and Harrington-rod instrumentation. J Bone Joint Surg Am. 1985;67:1384–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Grundy BL, Nash CL Jr, Brown RH. Deliberate hypotension for spinal fusion: prospective randomized study with evoked potential monitoring. Can Anaesth Soc J. 1982;29:452–62.PubMedCrossRefGoogle Scholar
  112. 112.
    Sharma A, Yadav M, Kumar BR, Lakshman PS, Iyenger R, Ramchandran G. A comparative study of Sterofundin and Ringer lactate based infusion protocol in scoliosis correction surgery. Anesth Essays Res. 2016;10(3):532–7. Scholar
  113. 113.
    Bharadwaj A, Khandelwal M, Bhargava SK. Perioperative neonatal and paediatric blood transfusion. Indian J Anaesth. 2014;58(5):652–7. Scholar
  114. 114.
    Cao X, Zhang X, Li Q. Efficacy of thromboelastography to monitor the clinical massive transfusion in scoliosis: a randomized controlled trial. Zhonghua Wai Ke Za Zhi. 2016;54(2):137–41.PubMedGoogle Scholar
  115. 115.
    Halpin RJ, Sugrue PA, Gould RW, Kallas PG, Schafer MF, Ondra SL, et al. Standardizing care for high-risk patients in spine surgery: the northwestern high-risk spine protocol. Spine. 2010;35(25):2232–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Laratta JL, Ha A, Shillingford JN, et al. Neuromonitoring in spinal deformity surgery: a multimodality approach. Global Spine J. 2018;8(1):68–77. Scholar
  117. 117.
    Glassman SD, Dimar JR, Puno RM, et al. A prospective analysis of intraoperative electromyographic monitoring of pedicle screw placement with computed tomographic scan confirmation. Spine. 1995;20:1375–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Bala E, Sessler DI, Nair DR, et al. Motor and somatosensory evoked potentials are well maintained in patients given dexmedetomidine during spine surgery. Anesthesiology. 2008;109:417–25.PubMedCrossRefGoogle Scholar
  119. 119.
    Ngwenyama NE, Anderson J, Hoernschemeyer DG, et al. Effects of dexmedetomidine on propofol and remifentanil infusion rates during total intravenous anesthesia for spine surgery in adolescents. Paediatr Anaesth. 2008;18:1190–5.PubMedGoogle Scholar
  120. 120.
    Pastorelli F, Di Silvestre M, Plasmati R, et al. The prevention of neural complications in the surgical treatment of scoliosis: the role of the neurophysiological intraoperative monitoring. Eur Spine J. 2011;20(Suppl 1):S105–14. Scholar
  121. 121.
    MacDonald DB, Al Zayed Z, Khoudeir I, et al. Monitoring scoliosis surgery with combined multiple pulse transcranial electric motor and cortical somatosensory-evoked potentials from the lower and upper extremities. Spine. 2002;28:194–203.CrossRefGoogle Scholar
  122. 122.
    Schwartz DM, Auerbach JD, Dormans JP, Flynn J, Drummond DS, Bowe JA, Laufer S, Shah SA, Bowen JR, Pizzutillo PD, Jones KJ, Drummond DS. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg. 2007;89A:2440–9.CrossRefGoogle Scholar
  123. 123.
    Almenrader N, Patel D. Spinal fusion surgery in children with non-idiopathic scoliosis: is there a need for routine postoperative ventilation? Br J Anaesth. 2006;97:851–7. PubMed: 17035337.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Fletcher ND, Glotzbecker MP, Marks M, Newton PO, Harms Study Group. Development of consensus-based best practice guidelines for postoperative care following posterior spinal fusion for adolescent idiopathic scoliosis. Spine. 2017;42:E547–54.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Muhly WT, Sankar WN, Ryan K, Norton A, Maxwell LG, DiMaggio T, et al. Rapid recovery pathway after spinal fusion for idiopathic scoliosis. Pediatrics. 2016;137(4):e20151568.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Kim E, Lee B, Cucchiaro G. Perioperative surgical home: evaluation of a new protocol focused on a multidisciplinary approach to manage children undergoing posterior spinal fusion operation. Anesth Analg. 2017;125:812–9.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Seki H, Ideno S, Ishihara T, Watanabe K, Matsumoto M, Morisaki H. Postoperative pain management in patients undergoing posterior spinal fusion for adolescent idiopathic scoliosis: a narrative review. Scoliosis Spinal Disord. 2018;13:17. Scholar
  128. 128.
    Menger RP, Kalakoti P, Pugely AJ, Nanda A, Sin A. Adolescent idiopathic scoliosis: risk factors for complications and the effect of hospital volume on outcomes. Neurosurg Focus. 2017;43(4):E3.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Monica S. Tandon
    • 1
  • Aastha Dhingra
    • 2
  • Vineeth Varma
    • 3
  1. 1.Department of Anesthesiology and Intensive Care, G.B. Pant Institute of Postgraduate Medical Education and ResearchMaulana Azad Medical College and Affiliated Hospitals, Delhi UniversityNew DelhiIndia
  2. 2.Department of AnesthesiaMax Super-specialty HospitalGhaziabadIndia
  3. 3.Department of OrthopedicsLok Nayak Jai Prakash Narayan Hospital, Maulana Azad Medical College and Affiliated Hospitals, Delhi UniversityNew DelhiIndia

Personalised recommendations