Advertisement

Management of Patient with Supratentorial Tumor

  • Rashmi Vandse
  • Donna Lien
  • Promod Pillai
Chapter
  • 28 Downloads

Abstract

Supratentorial tumors account for approximately 80% of all brain tumors in adults and constitute the majority of neurosurgical conditions that present for craniotomy. The nature of the lesions varies from benign tumors like meningiomas, pituitary adenomas to highly malignant tumors like glioblastomas. An anesthesiologist may encounter a patient with a supratentorial tumor for an elective planned surgery, thus allowing adequate time for optimization or for an acute neurologic deterioration, requiring emergent intervention. Understanding supratentorial tumors’ pathophysiology and implications of their effects not only on the neurological system, but also on other bodily systems like the endocrine, is crucial for delivering a safe and optimal anesthetic. The perioperative goals for supratentorial tumor resection are to optimize cerebral perfusion, oxygenation, and operative conditions, bestow neuroprotection, facilitate rapid and smooth awakening for postoperative neurological evaluation, minimize postoperative pain, and improve the oncological outcomes. It is important to avoid any secondary systemic insults. An ideal anesthetic regimen should deliver adequate amnesia and analgesia while maintaining systemic and cerebral milieu along with reduction in CMR and ICP. The different stages of anesthesia, from induction to emergence, entail idiosyncrasies that calls for tailored medication delivery, special positioning and monitoring. Intracranial hypertension, brain edema, seizure, and sequelae of endocrinopathies like DI, SIADH, or CSW are features of some brain tumors that need to be considered as understanding of their effects can guide how and when hyperosmolar solutions, diuretics, steroids, antiepileptics, and/or colloids are administered.

Keywords

Supratentorial Brain Tumors Intracranial pressure Cerebral edema Hypertonic saline Mannitol Delayed emergence 

References

Question 1

  1. 1.
    Ostrom QT, Gittleman H, Truitt G, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. 2018;20(suppl_4):iv1–86.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ellenbhogen R, Sekhar L, Kitchen N, et al. Principles of neurological surgery. Brain metastasis. 4th ed. Amsterdam: Elsevier. p. 586–592.e1.Google Scholar
  3. 3.
    Louis DN, Perry A, Reifenberger G, Von Deimling A, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.CrossRefGoogle Scholar

Question 2

  1. 4.
    Barash PG. Clinical anesthesia. Anesthesia for neurosurgery. 8th ed. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2017. p. 1003.Google Scholar

Question 3

  1. 5.
    Dunn LT. Raised intracranial pressure. J Neurol Neurosurg Psychiatry. 2002;73(suppl 1):i23–7.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 6.
    Macintyre I. A hotbed of medical innovation: George Kellie (1770–1829), his colleagues at Leith and the Monro–Kellie doctrine. J Med Biogr. 2014;22(2):93–100.PubMedCrossRefGoogle Scholar
  3. 7.
    Ropper AH. Lateral displacement of the brain and level of consciousness in patients with an acute hemispheral mass. N Engl J Med. 1986;314(15):953–8.PubMedCrossRefGoogle Scholar
  4. 8.
    Simonetti F, Uggetti C, Farina L, et al. Uncal displacement and intermittent third nerve compression. Lancet. 1993;342(8884):1431–2.PubMedCrossRefGoogle Scholar
  5. 9.
    Ropper AH. The opposite pupil in herniation. Neurology. 1990;40(11):1707.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 10.
    Bruce JN, Criscuolo GR, Merrill MJ, et al. Vascular permeability induced by protein product of malignant brain tumors: inhibition by dexamethasone. J Neurosurg. 1987;67(6):880–4.PubMedCrossRefGoogle Scholar
  7. 11.
    Tatagiba M, Mirzai S, Samii M. Peritumoral blood flow in intracranial meningiomas. Neurosurgery. 1991;28(3):400–4.PubMedCrossRefGoogle Scholar
  8. 12.
    Sharma D, Bithal PK, Dash HH, et al. Cerebral autoregulation and CO2 reactivity before and after elective supratentorial tumor resection. J Neurosurg Anesthesiol. 2010;22(2):132–7.PubMedCrossRefGoogle Scholar
  9. 13.
    Smith DR, Jacobson J, Kobrine AI, et al. Regional cerebral blood flow with intracranial mass lesions. Part II: autoregulation in localized mass lesion. Surg Neurol. 1977;7(4):238–40.PubMedGoogle Scholar
  10. 14.
    Wiranowska M, Gonzalvo AA, Saporta S, et al. Evaluation of blood–brain barrier permeability and the effect of interferon in mouse glioma model. J Neurooncol. 1992;14:225–36.PubMedCrossRefGoogle Scholar
  11. 15.
    On NH, Mitchell R, Savant SD, et al. Examination of blood–brain barrier (BBB) integrity in a mouse brain tumor model. J Neurooncol. 2013;111(2):133–43.PubMedCrossRefGoogle Scholar
  12. 16.
    Torres D, Canoll P. Alterations in the brain microenvironment in diffusely infiltrating low-grade glioma. Neurosurg Clin N Am. 2019;30(1):27–34.PubMedCrossRefGoogle Scholar
  13. 17.
    Liubinas SV, O’Brien TJ, Moffat BM, et al. Tumour associated epilepsy and glutamate excitotoxicity in patients with gliomas. J Clin Neurosci. 2014;21:899–908.PubMedCrossRefGoogle Scholar

Question 4

  1. 18.
    Chang SM, Parney IF, Huang W, et al. Patterns of care for adults with newly diagnosed malignant glioma. JAMA. 2005;293(5):557–64.PubMedCrossRefGoogle Scholar
  2. 19.
    Youland RS, Schomas DA, Brown PD, et al. Changes in presentation, treatment, and outcomes of adult low-grade gliomas over the past fifty years. Neuro Oncol. 2013;15(8):1102–10.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 20.
    Grant R. Overview: brain tumour diagnosis and management/Royal College of Physicians guidelines. J Neurol Neurosurg Psychiatry. 2004;75(suppl 2):ii18–23.PubMedPubMedCentralGoogle Scholar
  4. 21.
    Dunn LT. Raised intracranial pressure. J Neurol Neurosurg Psychiatry. 2002;73(suppl 1):i23–7.PubMedPubMedCentralCrossRefGoogle Scholar

Question 5:

  1. 22.
    Miller’s anesthesia. Cerebral physiology and the effects of anesthetic drugs. 8th ed. Philadelphia, PA: Elsevier/Saunders; 2015. p. 387–422.Google Scholar
  2. 23.
    Sanders RD, Degos V, Young WL. Cerebral perfusion under pressure: is the autoregulatory ‘plateau’a level playing field for all? Anaesthesia. 2011;66(11):968–72.PubMedCrossRefGoogle Scholar
  3. 24.
    Hu K, Peng CK, Czosnyka M, et al. Nonlinear assessment of cerebral autoregulation from spontaneous blood pressure and cerebral blood flow fluctuations. Cardiovasc Eng. 2008;8(1):60–71.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 25.
    Lebrun-Grandié P, Baron JC, Soussaline F, et al. Coupling between regional blood flow and oxygen utilization in the normal human brain: a study with positron tomography and oxygen 15. Arch Neurol. 1983;40(4):230–6.PubMedCrossRefGoogle Scholar
  5. 26.
    Barash PG. Clinical anesthesia. Anesthesia for neurosurgery. 8th ed. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2017. p. 1003.Google Scholar
  6. 27.
    Stullken EH Jr, Milde JH, Michenfelder JD, Tinker JH. The nonlinear responses of cerebral metabolism to low concentrations of halothane, enflurane, isoflurane, and thiopental. Anesthesiology. 1977;46:28–34.PubMedCrossRefGoogle Scholar
  7. 28.
    Kuroda Y, Murakami M, Tsuruta J, et al. Preservation of the ration of cerebral blood flow/metabolic rate for oxygen during prolonged anesthesia with isoflurane, sevoflurane, and halothane in humans. Anesthesiology. 1996;84:555–61.PubMedCrossRefGoogle Scholar
  8. 29.
    Strebel S, Lam AM, Matta BF, Newell DW. Impaired cerebral autoregulation after mild brain injury. Surg Neurol. 1997;47:128–31.PubMedCrossRefGoogle Scholar
  9. 30.
    Bruder NJ, Ravussin P, Schoettker P. Cottrell and Patel’s neuroanesthesia. Supratentorial masses: anesthetic considerations. In: Cottrell J, Patel P, editors. Neuroanesthesia. 6th ed. Amsterdam: Elsevier; 2016. p. 189–208.Google Scholar
  10. 31.
    Drummond JC, Scheller MS, Todd MM. The effect of nitrous oxide on cortical cerebral blood flow during anesthesia with halothane and isoflurane, with and without morphine, in the rabbit. Anesth Analg. 1987;66:1083–9.PubMedCrossRefGoogle Scholar
  11. 32.
    Harrison JM, Girling KJ, Mahajan RP. Effects of propofol and nitrous oxide on middle cerebral artery flow velocity and cerebral autoregulation. Anaesthesia. 2002;57:27–32.20.PubMedCrossRefGoogle Scholar
  12. 33.
    Yates H, Hamill M, Borel CO, Toung TJ. Incidence and perioperative management of tension pneumocephalus following craniofacial resection. J Neurosurg Anesthesiol. 1994;6(1):15–20.PubMedCrossRefGoogle Scholar
  13. 34.
    Bekker AY, Mistry A, Ritter AA, Wolk SC, Turndorf H. Computer simulation of intracranial pressure changes during induction of anesthesia: comparison of thiopental, propofol, and etomidate. J Neurosurg Anesthesiol. 1999;11(2):69–80.PubMedCrossRefGoogle Scholar
  14. 35.
    Renou AM, Vernhiet J, Macrez P, Constant P, BILLEEREY J, Khadaroo MY, Caille JM. Cerebral blood flow and metabolism during etomidate anaesthesia in man. Br J Anaesth. 1978;50(10):1047–51.PubMedCrossRefGoogle Scholar
  15. 36.
    Petersen KD, Landsfeldt U, Cold GE, Petersen CB, Mau S, Hauerberg J, et al. Intracranial pressure and cerebral hemodynamic in patients with cerebral tumors: a randomized prospective study of patients subjected to craniotomy in propofol-fentanyl, isoflurane-fentanyl, or sevoflurane-fentanyl anesthesia. Anesthesiology. 2003;98(2):329–36.PubMedCrossRefGoogle Scholar
  16. 37.
    Långsjö JW, Maksimow A, Salmi E, Kaisti K, Aalto S, Oikonen V, Hinkka S, Aantaa R, Sipilä H, Viljanen T, Parkkola R. S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans. Anesthesiology. 2005;103(2):258–68.PubMedCrossRefGoogle Scholar
  17. 38.
    Zeiler FA, Teitelbaum J, West M, Gillman LM. The ketamine effect on intracranial pressure in nontraumatic neurological illness. J Crit Care. 2014;29(6):1096–106.PubMedCrossRefGoogle Scholar
  18. 39.
    Wang X, Ding X, Tong Y, Zong J, Zhao X, Ren H, et al. Ketamine does not increase intracranial pressure compared with opioids: meta-analysis of randomized controlled trials. J Anesth. 2014;28(6):821–7.PubMedCrossRefGoogle Scholar
  19. 40.
    Zeiler FA, Teitelbaum J, West M, Gillman LM. The ketamine effect on ICP in traumatic brain injury. Neurocrit Care. 2014;21(1):163–73.PubMedCrossRefGoogle Scholar
  20. 41.
    Albanese J, Viviand X, Potie F, Rey M, Alliez B, Martin C. Sufentanil, fentanyl, and alfentanil in head trauma patients: a study on cerebral hemodynamics. Crit Care Med. 1999;27(2):407–11.PubMedCrossRefGoogle Scholar
  21. 42.
    Jamali S, Ravussin P, Archer D, et al. The effects of bolus administration of opioids on cerebrospinal fluid pressure in patients with supratentorial lesions. Anesth Analg. 1996;82:600–6.PubMedGoogle Scholar
  22. 43.
    Nishikawa T, Omote K, Namiki A, Takahashi T. The effects of nicardipine on cerebrospinal fluid pressure in humans. Anesth Analg. 1986;65(5):507–10.PubMedCrossRefGoogle Scholar
  23. 44.
    Pinaud M, Souron R, Lelausque JN, Gazeau MF, Lajat Y, Dixneuf B. Cerebral blood flow and cerebral oxygen consumption during nitroprusside-induced hypotension to less than 50 mmHg. Anesthesiology. 1989;70(2):255–60.PubMedCrossRefGoogle Scholar
  24. 45.
    Strebel SP, Kindler C, Bissonnette B, et al. The impact of systemic vasoconstrictors on the cerebral circulation of anesthetized patients. Anesthesiology. 1998;89:67–72.PubMedCrossRefGoogle Scholar
  25. 46.
    Nissen P, Brassard P, Jorgensen TB, et al. Phenylephrine but not ephedrine reduces frontal lobe oxygenation following anesthesia-induced hypotension. Neurocrit Care. 2010;12:17–23.PubMedCrossRefGoogle Scholar

Question 6

  1. 47.
    Brandes AA, Scelzi E, Salmistraro G, et al. Incidence and risk of thromboembolism during treatment of high-grade gliomas: a prospective study. Eur J Cancer. 1997;33(10):1592–6.PubMedCrossRefGoogle Scholar

Question 7

  1. 48.
    Lazar RM, Fitzsimmons BF, Marshall RS, Berman MF, Bustillo MA, Young WL, Mohr JP, Shah J, Robinson JV. Reemergence of stroke deficits with midazolam challenge. Stroke. 2002;33(1):283–5.PubMedCrossRefGoogle Scholar
  2. 49.
    Thal GD, Szabo MD, Lopez-Bresnahan M, Crosby G. Exacerbation or unmasking of focal neurologic deficits by sedatives. Anesthesiology. 1996;85(1):21–5.PubMedCrossRefGoogle Scholar
  3. 50.
    Lunn JK, Stanley TH, Webster LR, et al. Arterial blood-pressure and pulse-rate responses to pulmonary and radial arterial catheterization prior to cardiac and major vascular operations. Anesthesiology. 1979;51(3):265–8.PubMedCrossRefGoogle Scholar
  4. 51.
    Flexman AM, Wong H, Riggs KW, et al. Enzyme-inducing anticonvulsants increase plasma clearance of Dexmedetomidine: a pharmacokinetic and pharmacodynamic study. Anesthesiology. 2014;120(5):1118–25.PubMedCrossRefGoogle Scholar
  5. 52.
    Perry J, Zinman L, Chambers A, et al. Neuro-oncology Disease Site Group. The use of prophylactic anticonvulsants in patients with brain tumours—a systematic review. Curr Oncol. 2006;13(6):222.PubMedPubMedCentralGoogle Scholar
  6. 53.
    Paul F, Veauthier C, Fritz G, et al. Perioperative fluctuations of lamotrigine serum levels in patients undergoing epilepsy surgery. Seizure. 2007;16(6):479–84.PubMedCrossRefGoogle Scholar
  7. 54.
    Yeh JS, Dhir JS, Green AL, Bodiwala D, Brydon HL. Changes in plasma phenytoin level following craniotomy. Br J Neurosurg. 2006;20(6):403–6.PubMedCrossRefGoogle Scholar
  8. 55.
    Bruder NJ, Ravussin P, Schoettker P. Supratentorial masses: anesthetic considerations. In: Cottrell J, Patel P, editors. Neuroanesthesia. 6th ed. Amsterdam: Elsevier; 2016. p. 189–206.Google Scholar

Question 8

  1. 56.
    Kimura K, Iguchi Y, Inoue T, Shibazaki K, Matsumoto N, Kobayashi K, Yamashita S. Hyperglycemia independently increases the risk of early death in acute spontaneous intracerebral hemorrhage. J Neurol Sci. 2007;255(1–2):90–4.PubMedCrossRefGoogle Scholar
  2. 57.
    McGirt MJ, Woodworth GF, Brooke BS, et al. Hyperglycemia independently increases the risk of perioperative stroke, myocardial infarction, and death after carotid endarterectomy. Neurosurgery. 2006;58:1066–73; discussion 1066–1073.PubMedCrossRefGoogle Scholar
  3. 58.
    Graham DH. Monitoring neuromuscular block may be unreliable in patients with upper-motor-neuron lesions. Anesthesiology. 1980;52(1):74–5.PubMedCrossRefGoogle Scholar
  4. 59.
    Magnus N, D’Asti E, Garnier D, Meehan B, Rak J. Brain neoplasms and coagulation. In: Seminars in thrombosis and hemostasis, vol. 39. New York: Thieme Medical; 2013. p. 881–95.Google Scholar
  5. 60.
    Goh KY, Tsoi WC, Feng CS, et al. Haemostatic changes during surgery for primary brain tumours. J Neurol Neurosurg Psychiatry. 1997;63:334–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 61.
    Sawaya R, Glas-Greenwalt P. Post-operative venous thromboembolism and brain tumours. J Neurooncol. 1992;14:127–34.PubMedGoogle Scholar
  7. 62.
    Sawaya R, Donlon JA. Chronic disseminated intravascular coagulation and metastatic brain tumor: a case report and review of the literature. Neurosurgery. 1983;12(5):580–4.PubMedCrossRefGoogle Scholar
  8. 63.
    Moppett IK, Mahajan RP. Transcranial Doppler ultrasonography in anaesthesia and intensive care. Br J Anaesth. 2004;93(5):710–29.PubMedCrossRefGoogle Scholar

Question 9

  1. 64.
    Kandasamy R, Tharakan J, Idris Z, Abdullah JM. Intracranial bleeding following induction of anesthesia in a patient undergoing elective surgery for refractory epilepsy. Surg Neurol Int. 2013;4:124.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 65.
    Bruder NJ, Ravussin P, Schoettker P. Cottrell and Patel’s neuroanesthesia. Supratentorial masses: anesthetic considerations. In: Cottrell J, Patel P, editors. Neuroanesthesia. 6th ed. Amsterdam: Elsevier; 2016. p. 189–208.Google Scholar
  3. 66.
    Kovarik WD, Mayberg TS, Lam AM, et al. Succinylcholine does not change intracranial pressure, cerebral blood flow velocity, or the electroencephalogram in patients with neurologic injury. Anesth Analg. 1994;78(3):469–73.CrossRefGoogle Scholar

Question 10

  1. 67.
    Bayer-Berger MM, Ravussin P, Fankhauser H, Freeman J. Effect of three pretreatment techniques on hemodynamic and CSFP responses to skull-pin head-holder application during thiopentone/isoflurane or propofol anesthesia. J Neurosurg Anesthesiol. 1989;1(3):227–32.PubMedCrossRefGoogle Scholar
  2. 68.
    Papangelou A, Radzik BR, Smith T, Gottschalk A. A review of scalp blockade for cranial surgery. J Clin Anesth. 2013;25(2):150–9.PubMedCrossRefGoogle Scholar
  3. 69.
    Andrews RJ, Bringas JR. A review of brain retraction and recommendations for minimizing intraoperative brain injury. Neurosurgery. 1993;33(6):1052–64.PubMedGoogle Scholar
  4. 70.
    Petersen KD, Landsfeldt U, Cold GE, et al. Intracranial pressure and cerebral hemodynamic in patients with cerebral tumors, a randomized prospective study of patients subjected to craniotomy in Propofol-fentanyl, Isoflurane-fentanyl, or Sevoflurane-fentanyl anesthesia. Anesthesiology. 2003;98(2):329–36.PubMedCrossRefGoogle Scholar
  5. 71.
    Chui J, Mariappan R, Mehta J, et al. Comparison of propofol and volatile agents for maintenance of anesthesia during elective craniotomy procedures: systematic review and meta-analysis. Can J Anesth. 2014;61(4):347–56.PubMedCrossRefGoogle Scholar
  6. 72.
    Magni GM, Baisi F, La Rosa I, et al. No difference in emergence time and early cognitive function between sevoflurane-fentanyl and propofol-remifentanil in patients undergoing craniotomy for supratentorial intracranial surgery. J Neurosurg Anesthesiol. 2005;17(3):134–8.PubMedCrossRefGoogle Scholar
  7. 73.
    Talke P, Caldwell JE, Brown R, et al. A comparison of three anesthetic techniques in patients undergoing craniotomy for supratentorial intracranial surgery. Anesth Analg. 2002;95(2):430–5.PubMedGoogle Scholar
  8. 74.
    Necib S, Tubach F, Peuch C, et al. PROMIFLUNIL trial group. Recovery from anesthesia after craniotomy for supratentorial tumors: comparison of propofol-remifentanil and sevoflurane-sufentanil (the PROMIFLUNIL trial). J Neurosurg Anesthesiol. 2014;26(1):37–44.PubMedCrossRefGoogle Scholar
  9. 75.
    Matta BF, Heath KJ, Tipping K, Summors AC. Direct cerebral vasodilatory effects of sevoflurane and isoflurane. Anesthesiology. 1999;91(3):677.PubMedCrossRefGoogle Scholar
  10. 76.
    Kaisti KK, Långsjö JW, Aalto S, et al. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology. 2003;99(3):603–13.PubMedCrossRefGoogle Scholar
  11. 77.
    Cole CD, Gottfried ON, Gupta DK, Couldwell WT. Total intravenous anesthesia: advantages for intracranial surgery. Oper Neurosurg. 2007;61(suppl_5):ONSE369–78.CrossRefGoogle Scholar
  12. 78.
    Soliman RN, Hassan AR, Rashwan AM, Omar AM. Prospective, randomized controlled study to assess the role of dexmedetomidine in patients with supratentorial tumors undergoing craniotomy under general anesthesia. Middle East J Anaesthesiol. 2011;21(1):23–33.PubMedGoogle Scholar
  13. 79.
    Tanskanen PE, Kyttä JV, Randell TT, Aantaa RE. Dexmedetomidine as an anaesthetic adjuvant in patients undergoing intracranial tumour surgery: a double-blind, randomized and placebo-controlled study. Br J Anaesth. 2006;97(5):658–65.PubMedCrossRefGoogle Scholar
  14. 80.
    Maier C, Steinberg GK, Sun GH, Zhi GT, Maze M. Neuroprotection by the alpha 2-adrenoreceptor agonist dexmedetomidine in a focal model of cerebral ischemia. Anesthesiology. 1993;79(2):306–12.PubMedCrossRefGoogle Scholar
  15. 81.
    Yildiz M, Tavlan A, Tuncer S, et al. Effect of dexmedetomidine on haemodynamic responses to laryngoscopy and intubation. Drugs R D. 2006;7(1):43–52.PubMedCrossRefGoogle Scholar
  16. 82.
    Uyar AS, Yagmurdur H, Fidan Y, et al. Dexmedetomidine attenuates the hemodynamic and neuroendocrinal responses to skull-pin head-holder application during craniotomy. J Neurosurg Anesthesiol. 2008;20(3):174–9.PubMedCrossRefGoogle Scholar
  17. 83.
    Del AG, Ciritella P, Perrotta F, et al. Remifentanil vs fentanyl with a target controlled propofol infusion in patients undergoing craniotomy for supratentorial lesions. Minerva Anestesiol. 2006;72(5):309–19.Google Scholar
  18. 84.
    Bhagat H, Dash HH, Bithal PK, et al. Planning for early emergence in neurosurgical patients: a randomized prospective trial of low-dose anesthetics. Anesth Analg. 2008;107(4):1348–55.PubMedCrossRefGoogle Scholar
  19. 85.
    Bilotta F, Caramia R, Paoloni FP, et al. Early postoperative cognitive recovery after remifentanil–propofol or sufentanil–propofol anaesthesia for supratentorial craniotomy: a randomized trial. Eur J Anaesthesiol. 2007;24(2):122–7.PubMedCrossRefGoogle Scholar
  20. 86.
    Gelb AW, Salevsky F, Chung F, et al. Remifentanil with morphine transitional analgesia shortens neurological recovery compared to fentanyl for supratentorial craniotomy. Can J Anesth. 2003;50(9):946–52.PubMedCrossRefGoogle Scholar

Question 13

  1. 87.
    Futier E, Constantin JM, Paugam-Burtz C, Pascal J, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369(5):428–37.PubMedCrossRefGoogle Scholar
  2. 88.
    Coles JP, Fryer TD, Coleman MR, et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;35(2):568–78.CrossRefGoogle Scholar
  3. 89.
    Sogame LC, Vidotto MC, Jardim JR, Faresin SM. Incidence and risk factors for postoperative pulmonary complications in elective intracranial surgery. J Neurosurg. 2008;109:222–7.PubMedPubMedCentralCrossRefGoogle Scholar

Question 14

  1. 90.
    Dostal P, Dostalova V, Schreiberova J, et al. A comparison of equivolume, equiosmolar solutions of hypertonic saline and mannitol for brain relaxation in patients undergoing elective intracranial tumor surgery: a randomized clinical trial. J Neurosurg Anesthesiol. 2015;27(1):51–6.PubMedCrossRefGoogle Scholar
  2. 91.
    Hernández-Palazón J, Fuentes-García D, Doménech-Asensi P, et al. A comparison of equivolume, equiosmolar solutions of hypertonic saline and mannitol for brain relaxation during elective supratentorial craniotomy. Br J Neurosurg. 2016;30(1):70–5.PubMedCrossRefGoogle Scholar
  3. 92.
    Rozet I, Tontisirin N, Muangman S, et al. Effect of equiosmolar solutions of mannitol versus hypertonic saline on intraoperative brain relaxation and electrolyte balance. Anesthesiology. 2007;107(5):​697–704.PubMedCrossRefGoogle Scholar
  4. 93.
    Rasmussen M, Bundgaard H, Cold GE. Craniotomy for supratentorial brain tumors: risk factors for brain swelling after opening the dura mater. J Neurosurg. 2004;101(4):621–6.PubMedCrossRefGoogle Scholar
  5. 94.
    Burke AM, Quest DO, Chien S, Cerri C. The effects of mannitol on blood viscosity. J Neurosurg. 1981;55(4):550–3.PubMedCrossRefGoogle Scholar
  6. 95.
    Hijiya N, Horiuchi K, Asakura T. Morphology of sickle cells produced in solutions of varying osmolarities. J Lab Clin Med. 1991;117(1):60–6.PubMedGoogle Scholar
  7. 96.
    Fang J, Yang Y, Wang W, Liu Y, An T, Zou M, Cheng G. Comparison of equiosmolar hypertonic saline and mannitol for brain relaxation during craniotomies: a meta-analysis of randomized controlled trials. Neurosurg Rev. 2018;41(4):945–56.PubMedCrossRefGoogle Scholar
  8. 97.
    Tsaousi G, Stazi E, Cinicola M, Bilotta F. Cardiac output changes after osmotic therapy in neurosurgical and neurocritical care patients: a systematic review of the clinical literature. Br J Clin Pharmacol. 2018;84(4):636–48.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 98.
    Stiff JL, Munch DF, Bromberger-Barnea B. Hypotension and respiratory distress caused by rapid infusion of mannitol or hypertonic saline. Anesth Analg. 1979;58(1):42–8.PubMedCrossRefGoogle Scholar
  10. 99.
    McAlister V, Burns KE, Znajda T, Church B. Hypertonic saline for peri-operative fluid management. Cochrane Database Syst Rev. 2010;(1):CD005576.Google Scholar

Question 15

  1. 100.
    Atkins JH, Smith DS. A review of perioperative glucose control in the neurosurgical population. J Diabetes Sci Technol. 2009;3(6):1352–64.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 101.
    Bilotta F, Rosa G. Glucose management in the neurosurgical patient: are we yet any closer? Curr Opin Anesthesiol. 2010;23(5):539–43.CrossRefGoogle Scholar
  3. 102.
    Stephens RC, Mythen MG. Saline-based fluids can cause a significant acidosis that may be clinically relevant. Crit Care Med. 2000;28(9):3375–6.PubMedCrossRefGoogle Scholar
  4. 103.
    Bunn F, Trivedi D, Ashraf S. Colloid solutions for fluid resuscitation. Cochrane Database Syst Rev. 2008;(1):CD001319.Google Scholar

Question 18

  1. 104.
    Fagan C, Frizelle HP, Laffey J, Hannon V, Carey M. The effects of intracuff lidocaine on endotracheal-tube-induced emergence phenomena after general anesthesia. Anesth Analg. 2000;91(1):201–5.PubMedGoogle Scholar
  2. 105.
    Tanaka Y, Nakayama T, Nishimori M, Sato Y, Furuya H. Lidocaine for preventing postoperative sore throat. Cochrane Database Syst Rev. 2009;(3):CD004081.Google Scholar
  3. 106.
    Stone DJ, Gal TJ. Airway management. In: Miller RD, editor. Textbook of Anesthesia. 5th ed. Philadelphia: Churchill Livingstone; 2000. p. 1414–51.Google Scholar
  4. 107.
    Todd MM, Warner DS, Sokoll MD, Maktabi MA, Hindman BJ, Scamman FL, Kirschner J. A prospective, comparative trial of three anesthetics for elective supratentorial craniotomy. Propofol/fentanyl, isoflurane/nitrous oxide, and fentanyl/nitrous oxide. Anesthesiology. 1993;78(6):1005–20.PubMedCrossRefGoogle Scholar
  5. 108.
    Muzzi DA, Black S, Losasso TJ, Cucchiara RF. Labetalol and esmolol in the control of hypertension after intracranial surgery. Anesth Analg. 1990;70(1):68–71.PubMedGoogle Scholar
  6. 109.
    Schubert A. Cerebral hyperemia, systemic hypertension, and perioperative intracranial morbidity: is there a smoking gun? Anesth Analg. 2002;94:485–7.PubMedCrossRefGoogle Scholar
  7. 110.
    Seifman MA, Lewis PM, Rosenfeld JV, Hwang PY. Postoperative intracranial haemorrhage: a review. Neurosurg Rev. 2011;34(4):393–407.PubMedCrossRefGoogle Scholar
  8. 111.
    Neelakanta G, Miller J. Minimum alveolar concentration of isoflurane for tracheal extubation in deeply anesthetized children. Anesthesiology. 1994;80(4):811–3.PubMedCrossRefGoogle Scholar
  9. 112.
    Lee JH, Choi SH, Choi YS, Lee B, Yang SJ, Lee JR. Does the type of anesthetic agent affect remifentanil effect-site concentration for preventing endotracheal tube-induced cough during anesthetic emergence? Comparison of propofol, sevoflurane, and desflurane. J Clin Anesth. 2014;26(6):466–74.PubMedCrossRefGoogle Scholar
  10. 113.
    Choi SH, Min KT, Lee JR, Choi KW, Han KH, Kim EH, Oh HJ, Lee JH. Determination of EC95 of remifentanil for smooth emergence from propofol anesthesia in patients undergoing transsphenoidal surgery. J Neurosurg Anesthesiol. 2015;27(2):160–6.PubMedCrossRefGoogle Scholar
  11. 114.
    Nishina K, Mikawa K, Maekawa N, Obara H. Fentanyl attenuates cardiovascular responses to tracheal extubation. Acta Anaesthesiol Scand. 1995;39(1):85–9.PubMedCrossRefGoogle Scholar
  12. 115.
    Saghaei M, Reisinejad A, Soltani H. Prophylactic versus therapeutic administration of intravenous lidocaine for suppression of post-extubation cough following cataract surgery: a randomized double blind placebo controlled clinical trial. Acta Anaesthesiol Taiwan. 2005;43(4):205–9.PubMedGoogle Scholar
  13. 116.
    Turan G, Ozgultekin A, Turan C, Dincer E, Yuksel G. Advantageous effects of dexmedetomidine on haemodynamic and recovery responses during extubation for intracranial surgery. Eur J Anaesthesiol. 2008;25(10):816–20.PubMedCrossRefGoogle Scholar
  14. 117.
    Luthra A, Prabhakar H, Rath GP. Alleviating stress response to tracheal extubation in neurosurgical patients: a comparative study of two infusion doses of dexmedetomidine. J Neurosci Rural Pract. 2017;8(Suppl 1):S49.PubMedPubMedCentralGoogle Scholar
  15. 118.
    Grillo P, Bruder N, Auquier P, Pellissier D, Gouin F. Esmolol blunts the cerebral blood flow velocity increase during emergence from anesthesia in neurosurgical patients. Anesth Analg. 2003;96(4):1145–9.PubMedCrossRefGoogle Scholar
  16. 119.
    Bebawy JF, Houston CC, Kosky JL, Badri AM, Hemmer LB, Moreland NC, Carabini LM, Koht A, Gupta DK. Nicardipine is superior to esmolol for the management of postcraniotomy emergence hypertension: a randomized open-label study. Anesth Analg. 2015;120(1):186–92.PubMedCrossRefGoogle Scholar
  17. 120.
    Mahajan C, Rath GP, Sharma MS, Dube SK, Rajagopalan V, Bithal PK. Rate and reasons for elective ventilation in patients undergoing intracranial tumour surgery. J Neuroanaesthesiol Crit Care. 2014;1(2):125.CrossRefGoogle Scholar
  18. 121.
    Misal US, Joshi SA, Shaikh MM. Delayed recovery from anesthesia: a postgraduate educational review. Anesth Essays Res. 2016;10(2):164.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 122.
    Cottrell JE, Patel P. Cottrell and Patel’s neuroanesthesia e-book. New York: Elsevier Health Sciences; 2016.Google Scholar
  20. 123.
    Bui JQ, Mendis RL, Van Gelder JM, Sheridan MM, Wright KM, Jaeger M. Is postoperative intensive care unit admission a prerequisite for elective craniotomy? Clinical article. J Neurosurg. 2011;115(6):1236–41.PubMedCrossRefGoogle Scholar

Question 19

  1. 124.
    Gottschalk A, Berkow LC, Stevens RD, Mirski M, Thompson RE, White ED, Weingart JD, Long DM, Yaster M. Prospective evaluation of pain and analgesic use following major elective intracranial surgery. J Neurosurg. 2007;106(2):210–6.PubMedCrossRefGoogle Scholar
  2. 125.
    Vacas S, Van de Wiele B. Designing a pain management protocol for craniotomy: a narrative review and consideration of promising practices. Surg Neurol Int. 2017;8:291.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 126.
    Yu EH, Tran DH, Lam SW, Irwin MG. Remifentanil tolerance and hyperalgesia: short-term gain, long-term pain? Anaesthesia. 2016;71(11):1347–62.PubMedCrossRefGoogle Scholar

Question 20

  1. 127.
    Latz B, Mordhorst C, Kerz T, Schmidt A, Schneider A, Wisser G, Werner C, Engelhard K. Postoperative nausea and vomiting in patients after craniotomy: incidence and risk factors. J Neurosurg. 2011;114(2):491–6.PubMedCrossRefGoogle Scholar
  2. 128.
    Jain V, Mitra JK, Rath GP, Prabhakar H, Bithal PK, Dash HH. A randomized, double-blinded comparison of ondansetron, granisetron, and placebo for prevention of postoperative nausea and vomiting after supratentorial craniotomy. J Neurosurg Anesthesiol. 2009;21(3):226–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Rashmi Vandse
    • 1
  • Donna Lien
    • 1
  • Promod Pillai
    • 2
  1. 1.Department of AnesthesiologyLoma Linda University Medical CenterLoma LindaUSA
  2. 2.Department of Neurologic SurgeryLoma Linda UniversityLoma LindaUSA

Personalised recommendations