Non-Linear Enhancement Techniques for Mammograms

  • Vikrant BhatejaEmail author
  • Mukul Misra
  • Shabana Urooj
Part of the Studies in Computational Intelligence book series (SCI, volume 861)


Non-linear enhancement techniques encompass various categories of approaches. Those specific to or commonly applied for processing of medical images include morphological filtering, fuzzy-based enhancement and non-linear filters.


  1. V. Bhateja, S. Devi, A Novel Framework for edge detection of microcalcifications using a non-linear enhancement operator and morphological filter, in Proceeding of (IEEE) 3rd International Conference on Electronics & Computer Technology (ICECT-2011), Kanyakumari (India), vol. 5 (April 2011), pp. 419–424Google Scholar
  2. V. Bhateja, R. Verma, R. Mehrotra and S. Urooj, A Non-linear Approach to ECG Signal Processing using Morphological Filters. Int. J. Meas. Technol. Instrum. Eng. (IJMTIE), 3(3), 46–59 (2014)CrossRefGoogle Scholar
  3. A. C. Bovik, Handbook of image and video processing, 2nd ed. (Elsevier Academic Press, Amsterdam, 2010)Google Scholar
  4. H. D. Cheng, H. Xu, A novel fuzzy logic approach to mammogram contrast enhancement. Inf. Sci. 148(4), 167–184 (2002)CrossRefGoogle Scholar
  5. G. Chen, K. Panetta, S. Agaian, New edge detection algorithms using alpha weighted quadratic filter, in Proceedings of IEEE International Conference on Systems, Man, and Cybernetics (SMC-2011), Alaska, USA (2011), pp. 3167–3172Google Scholar
  6. H. Deng, X. Sun, M. Liu, C. Ye, X. Zhou, Image enhancement based on intuitionistic fuzzy sets theory. IET Image Process. 10(10), 701–709 (2016)CrossRefGoogle Scholar
  7. R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd ed. (Prentice Hall, USA 2007)Google Scholar
  8. M.A. Guerroudji, Z. Ameur, A new approach for the detection of mammary calcifications by using the white top-hat transform and thresholding of Otsu. Opt.-Int. J. Light. Electron. Opt. 127(3), 1251–1259 (2016)CrossRefGoogle Scholar
  9. V.S. Hari, R.V.P. Jagathy, R. Gopikakumari, Enhancement of calcifications in mammograms using volterra series based quadratic filter, in Proceedings of IEEE International Conference on Data Science & Engineering (ICDSE-2012), Cochin, Kerala, India (2012), pp. 85–89Google Scholar
  10. V.S. Hari, R.V.P. Jagathy, R. Gopikakumari, Unsharp masking using quadratic filter for the enhancement of fingerprints in noisy background. Pattern Recognit. 46(12), 3198–3207 (2013)CrossRefGoogle Scholar
  11. J. Jiang, B. Yao, A.M. Wason, Integration of fuzzy logic and structure tensor towards mammogram contrast enhancement. Comput. Med. Imaging Graph. 29(1), 83–90 (2005)CrossRefGoogle Scholar
  12. H. Li, Y. Wang, K.J.R. Liu, S.B. Lo, M.T. Freedman, Computerized radiographic mass detection-I: lesion site selection by morphological enhancement and contextual segmentation. IEEE Trans. Med. Imaging 20(4), 289–301 (2001)CrossRefGoogle Scholar
  13. V.J. Mathews, Adaptive polynomial filters. IEEE Signal Process. Mag. 8(3), 10–26 (1991)CrossRefGoogle Scholar
  14. A. Mencattini, M. Salmeri, R. Lojacono, M. Frigerio, F. Caselli, Mammographic images enhancement and denoising for breast cancer detection using dyadic wavelet processing. IEEE Trans. Instrum. Meas. 57(7), 1422–1430 (2008)CrossRefGoogle Scholar
  15. H. Mohamed, M.S. Mabrouk, A. Sharawy, Computer aided detection system for micro calcifications in digital mammograms. Comput. Methods Programs Biomed. 116(3), 226–235 (2014)CrossRefGoogle Scholar
  16. Mohanalin, P. K. Kalra, N. Kumar, An automatic method to enhance microcalcifications using normalized tsallis entropy, Signal Process. 90(3), 952–958 (2010)CrossRefGoogle Scholar
  17. A. Papadopoulos, D.I. Fotiadis, L. Costaridou, Improvement of microcalcification cluster detection in mammography utilizing image enhancement techniques. Comput. Biol. Med. 38(10), 1045–1055 (2008)CrossRefGoogle Scholar
  18. I. Pitas, A.N. Venetsanopoulos, Morphological shape decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 38–45 (1990)CrossRefGoogle Scholar
  19. I. Pitas, A. N. Venetsanopoulos, Order statistics in digital image processing. Proc. IEEE 80(12), 1893–1921 (1992)CrossRefGoogle Scholar
  20. G. Ramponi, Bi-impulse response design of isotropic quadratic filters. Proc. IEEE 78(4), 665–667 (1990)CrossRefGoogle Scholar
  21. G. Ramponi, G. L. Sicuranza, Quadratic digital filters for image processing. IEEE Trans. Acoust., Speech, Signal Process. 36(6), 937–939 (1988)CrossRefGoogle Scholar
  22. G.L. Sicuranza, Quadratic filters for signal processing. Proc. IEEE, 80(8), 1263–1285 (1992)CrossRefGoogle Scholar
  23. T. Stojic, I. Reljin, B. Reljin, Local contrast enhancement in digital mammography by using mathematical morphology, in Proceedings of IEEE International Symposium Signals, Circuits and Systems (ISSCS-2005), Romania, vol. 2, pp. 609–612 (2005)Google Scholar
  24. S. Thurnhofer, S.K. Mitra, A general framework for quadratic volterra filters for edge enhancement. IEEE Trans. Image Process., 5(6), 950–963 (1996)CrossRefGoogle Scholar
  25. J.H. Yoon, Y.M. Ro, Enhancement of the contrast in mammographic images using the homomorphic filter method. IEICE Trans. Inf. Syst. 85(1), 298–303 (2002)Google Scholar
  26. Y. Zhou, K.A. Panetta, S.S. Agaian, Mammogram enhancement using alpha weighted quadratic filter, in Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, Minnesota (2009), pp. 3681–3684Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringShri Ramswaroop Memorial Group of Professional Colleges (SRMGPC)LucknowIndia
  2. 2.Dr. A.P.J. Abdul Kalam Technical UniversityLucknowIndia
  3. 3.Faculty of Electronics and Communication EngineeringShri Ramswaroop Memorial University (SRMU)BarabankiIndia
  4. 4.Department of Electrical Engineering, College of EngineeringPrincess Nourah Bint Abdulrahman UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations