Advertisement

Soft Numerical Algorithm with Convergence Analysis for Time-Fractional Partial IDEs Constrained by Neumann Conditions

  • Omar Abu ArqubEmail author
  • Mohammed Al-Smadi
  • Shaher Momani
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 303)

Abstract

Some scientific pieces of research are governed by classes of partial integro-differential equations (PIDEs) of fractional order that are leading to novel challenges in simulation and optimization. In this chapter, a soft numerical algorithm is proposed and analyzed to fitted analytical solutions of PIDEs with appropriate initial and Neumann conditions in Sobolev space. Meanwhile, the solutions are represented in series form with strictly computable components. By truncating n-term approximation of the analytical solution, the solution methodology is discussed for both linear and nonlinear problems based on the nonhomogeneous term. Analysis of convergence and smoothness are given under certain assumptions to show the theoretical structures of the method. Dynamic features of the approximate solutions are studied through an illustrated example. The yield of numerical results indicates the accuracy, clarity, and effectiveness of the proposed algorithm as well as provide a proper methodology in handling such fractional issues.

Keywords

Partial integro-differential equations Reproducing kernel algorithm Fredholm and Volterra operators Fractional derivatives 

References

  1. 1.
    Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London, UK (2010)zbMATHCrossRefGoogle Scholar
  2. 2.
    Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press (2005)Google Scholar
  3. 3.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, CA, USA (1999)zbMATHGoogle Scholar
  4. 4.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993)zbMATHGoogle Scholar
  5. 5.
    Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, Netherlands (2006)zbMATHGoogle Scholar
  6. 6.
    Arshed, S.: B-spline solution of fractional integro partial differential equation with a weakly singular kernel. Numer. Methods Part. Differe. Equ. (2017). In Press.  https://doi.org/10.1002/num.22153.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Rostami, Y., Maleknejad, K.: Numerical solution of partial integro-differential equations by using projection method. Mediterranean J. Math. 14, 113 (2017).  https://doi.org/10.1007/s00009-017-0904-zMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Huang, L., Li, X.F., Zhao, Y., Duan, X.Y.: Approximate solution of fractional integro-differential equations by Taylor expansion method. Comput. Math. Appl. 62, 1127–1134 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Mohammed, D.S.: Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomial. Math. Problems Eng. 2014, Article ID 431965, 5 p. (2014).  https://doi.org/10.1155/2014/431965MathSciNetCrossRefGoogle Scholar
  10. 10.
    Momani, S., Qaralleh, R.: An efficient method for solving systems of fractional integro-differential equations. Comput. Math. Appl. 52, 459–470 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Tohidi, E., Ezadkhah, M.M., Shateyi, S.: Numerical solution of nonlinear fractional Volterra integro-differential equations via Bernoulli polynomials. Abstract Appl. Anal. 2014, Article ID 162896, 7 p. (2014).  https://doi.org/10.1155/2014/162896MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Wang, Y., Zhu, L.: Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method. Adv. Differ. Equ. 2017, 27 (2017).  https://doi.org/10.1186/s13662-017-1085-6MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Abu Arqub, O., El-Ajou, A., Momani, S.: Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations. J. Comput. Phys. 293, 385–399 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    El-Ajou, A., Abu Arqub, O., Momani, S., Baleanu, D., Alsaedi, A.: A novel expansion iterative method for solving linear partial differential equations of fractional order. Appl. Math. Comput. 257, 119–133 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    El-Ajou, A., Abu Arqub, O., Momani, S.: Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm. J. Comput. Phys. 293, 81–95 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Ray, S.S.: New exact solutions of nonlinear fractional acoustic wave equations in ultrasound. Comput. Math. Appl. 71, 859–868 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Ortigueira, M.D., Machado, J.A.T.: Fractional signal processing and applications. Signal Process 83, 2285–2286 (2003)CrossRefGoogle Scholar
  18. 18.
    Zaremba, S.: L’equation biharminique et une class remarquable defonctionsfoundamentals harmoniques. Bulletin International de l’Academie des Sciences de Cracovie 39, 147–196 (1907)Google Scholar
  19. 19.
    Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Cui, M., Lin, Y.: Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science, New York, NY, USA (2009)zbMATHGoogle Scholar
  21. 21.
    Al-Smadi, M.: Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation. Ain Shams Eng. J. 9(4), 2517–2525 (2018)CrossRefGoogle Scholar
  22. 22.
    Daniel, A.: Reproducing Kernel Spaces and Applications. Springer, Basel, Switzerland (2003)zbMATHGoogle Scholar
  23. 23.
    Weinert, H.L.: Reproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing, Hutchinson Ross (1982)Google Scholar
  24. 24.
    Lin, Y., Cui, M., Yang, L.: Representation of the exact solution for a kind of nonlinear partial differential equations. Appl. Math. Lett. 19, 808–813 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Zhoua, Y., Cui, M., Lin, Y.: Numerical algorithm for parabolic problems with non-classical conditions. J. Comput. Appl. Math. 230, 770–780 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Abu Arqub, O.: Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Comput. Math. Appl. 73, 1243–1261 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Abu Arqub, O., Shawagfeh, N.: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J. Porous Media (2017). In PressGoogle Scholar
  28. 28.
    Abu Arqub, O., Rashaideh, H.: The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs. Neural Comput. Appl., 1–12 (2017).  https://doi.org/10.1007/s00521-017-2845-7CrossRefGoogle Scholar
  29. 29.
    Abu Arqub, O.: The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math. Methods Appl. Sc. 39, 4549–4562 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Abu Arqub, O., Al-Smadi, M., Shawagfeh, N.: Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl. Math. Comput. 219, 8938–8948 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl. Math. Comput. 243, 911–922 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Momani, S., Abu Arqub, O., Hayat, T., Al-Sulami, H.: A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm-Voltera type. Appl. Math. Comput. 240, 229–239 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T.: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. 20, 3283–3302 (2016)zbMATHCrossRefGoogle Scholar
  34. 34.
    Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T. : Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput., 1–16 (2016).  https://doi.org/10.1007/s00500-016-2262-3zbMATHCrossRefGoogle Scholar
  35. 35.
    Abu Arqub, O.: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Comput. Appl., 1–20 (2015).  https://doi.org/10.1007/s00521-015-2110-xCrossRefGoogle Scholar
  36. 36.
    Abu Arqub, O.: Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fundamenta Informaticae 146, 231–254 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Abu Arqub, O., Integral-initial, Z., Al-Smadi, M.: Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates. Nonlinear Dyn. 94(3), 1819–1834 (2018)zbMATHCrossRefGoogle Scholar
  38. 38.
    Abu Arqub, O.: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int. J. Numer. Methods Heat Fluid Flow (2017).  https://doi.org/10.1108/HFF-07-2016-0278CrossRefGoogle Scholar
  39. 39.
    Geng, F.Z., Qian, S.P.: Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers. Appl. Math. Lett. 26, 998–1004 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Jiang, W., Chen, Z.: A collocation method based on reproducing kernel for a modified anomalous subdiffusion equation. Numer. Methods Part. Differ. Equ. 30, 289–300 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Geng, F.Z., Qian, S.P., Li, S.: A numerical method for singularly perturbed turning point problems with an interior layer. J. Comput. Appl. Math. 255, 97–105 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Al-Smadi, M., Abu Arqub, O., Shawagfeh, N., Momani, S.: Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method. Appl. Math. Comput. 291, 137–148 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Jiang, W., Chen, Z.: Solving a system of linear Volterra integral equations using the new reproducing kernel method. Appl. Math. Comput. 219, 10225–10230 (2013)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Geng, F.Z., Qian, S.P.: Modified reproducing kernel method for singularly perturbed boundary value problems with a delay. Appl. Math. Model. 39, 5592–5597 (2015)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Al-Smadi, M., Abu Arqub, O.: Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates. Appl. Math. Comput. 342, 280–294 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Abu Arqub, O., Al-Smadi, M.: Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painlevé equations in Hilbert space. Chaos Solitons Fractals 117, 161–167 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Omar Abu Arqub
    • 1
    Email author
  • Mohammed Al-Smadi
    • 2
  • Shaher Momani
    • 1
    • 3
  1. 1.Department of Mathematics, Faculty of ScienceThe University of JordanAmmanJordan
  2. 2.Department of Applied ScienceAjloun College, Al-Balqa Applied UniversityAjlounJordan
  3. 3.Department of Mathematics and Sciences, College of Humanities and SciencesAjman UniversityAjmanUAE

Personalised recommendations