Advertisement

Offshore Wind System in the Way of Energy 4.0: Ride Through Fault Aided by Fractional PI Control and VRFB

  • Rui MelicioEmail author
  • Duarte Valério
  • V. M. F. Mendes
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 303)

Abstract

This chapter presents a simulation of a study to improve the ability of an offshore wind system to recover from a fault due to a rectifier converter malfunction. The system comprises: a semi-submersible platform; a variable-speed wind turbine; a PMSG; a 5LC-MPC; a fractional PI controller using the Carlson approximation. Recovery is improved by shielding the DC link of the converter during the fault using as further equipment a redox vanadium flow battery, aiding the system operation as desired in the scope of Energy 4.0. Contributions are given for: (i) the fault influence on the behavior of voltages and currents in the capacitor bank of the DC link; (ii) the drivetrain modeling of the floating platform by a three-mass modeling; (iii) the vanadium flow battery integration in the system.

Keywords

Offshore wind system VRFB MPC five-level converter Ride through capability Simulation Energy 4.0 Fractional control 

References

  1. 1.
    Akhmatov, V., Knudsen, H., Nielsen, A.H.: Advanced simulation of windmills in the electric power supply. Int. J. Electr. Power Energy Syst. 22, 421–434 (2000)CrossRefGoogle Scholar
  2. 2.
    Arribas, B.N., Melicio, R., Teixeira, J.G., Mendes, V.M.F.: Vanadium redox flow battery storage system linked to the electric grid. Renew. Energy Power Qual. J. 1(14), 1025–1030 (2016)CrossRefGoogle Scholar
  3. 3.
    Banham-Hall, D.D., Taylor, G.A., Smith, C.A.: Flow batteries for enhancing wind power integration. IEEE Trans. Power Syst. 27(3), 1690–1697 (2012)CrossRefGoogle Scholar
  4. 4.
    Batista, N.C., Melicio, R., Mendes, V.M.F.: Services enabler architecture for smart grid and smart living services providers under industry 4.0. Energy Build. 141, 16–27 (2017)CrossRefGoogle Scholar
  5. 5.
    Brooke, J.: Wave Energy Conversion Systems, 1st edn. Elsevier Science, UK (2003)Google Scholar
  6. 6.
    Campanile, A., Scamardella, V.P.A.: Mooring design and selection for floating offshore wind turbines on intermediate and deep water depths. Ocean Eng. 148, 349–360 (2018)CrossRefGoogle Scholar
  7. 7.
    Carlson, G.E., Hajlijak, C.A.: Approximation of fractional capacitors \((1/s)^{1/n}\) by a regular Newton process. IEEE Trans. Circuit Theory 11, 210–213 (1964)CrossRefGoogle Scholar
  8. 8.
    Castro-Santos, L., Diaz-Casas, V.: Economic influence of location in floating offshore wind farms. Ocean Eng. 107, 13–22 (2015)CrossRefGoogle Scholar
  9. 9.
    CNESA China Energy Storage Alliance: China’s top 10 storage headlines of 2016 (2017). URL http://en.cnesa.org/featured-stories/2017/1/6/chinas-top-10-storage-headlines-of-2016/. Accessed 1 June 2017
  10. 10.
    Community Energy Scotland: Gigha battery project (2017). URL http://www.communityenergyscotland.org.uk/gigha-battery-project.asp/. Accessed 22 May 2017
  11. 11.
    D., D.V., da Costa, J.S.: Tuning of fractional PID controllers with ziegler-nichols type rules. Signal Process. 86, 2771–2784 (2006)Google Scholar
  12. 12.
    Divya, K.C., Østergaard, J.: Battery energy storage technology for power systems—an overview. Electr. Power Syst. Res. 79, 511–520 (2009)CrossRefGoogle Scholar
  13. 13.
    El-Kafafy, M., Devriendt, C., Guillaume, P., Helsen, J.: Automatic tracking of the modal parameters of an offshore wind turbine drivetrain system. Energies 10(4), 1–15 (2017)CrossRefGoogle Scholar
  14. 14.
    Gomes, L.L.R., Pousinho, H.M.I., Melcio, R., Mendes, V.M.F.: Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market. Energy 124, 310–320 (2017)CrossRefGoogle Scholar
  15. 15.
    Guarnieri, M., Mattavelli, P., Petrone, G., Spagnuolo, G.: Vanadium redox flow batteries: potentials and challenges of an emerging storage technology. IEEE Indu. Electron. Mag. 10(4), 20–31 (2016)CrossRefGoogle Scholar
  16. 16.
    Haas, J., Olivares, M.A., Palma-Behnke, R.: Grid-wide subdaily hydrologic alteration under massive wind power penetration in Chile. J. Environ. Manag. 154, 183–189 (2015)CrossRefGoogle Scholar
  17. 17.
    Jichuan, K., Liping, S., Hai, S., Chulin, W.: Risk assessment of floating offshore wind turbine based on correlation-FMEA. Ocean Eng. 129, 382–388 (2017)CrossRefGoogle Scholar
  18. 18.
    Khomfoi, S., Tolbert, L.M.: Multilevel power converters. In: Rashid, M.H. (ed.) Power Electronics Handbook, 2nd edn, pp. 451–482. Academic Press, USA (2007)CrossRefGoogle Scholar
  19. 19.
    Lanusse, P., Malti, R., Melchior, P.: CRONE control system design toolbox for the control engineering community: tutorial and case study. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 371, 1–14 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lin, L., Kai, W., Vassalos, D.: Detecting wake performance of floating offshore wind turbine. Ocean Eng. 156, 263–276 (2018)CrossRefGoogle Scholar
  21. 21.
    Maione, G., Lino, P.: New tuning rules for fractional PI-alfa controllers. Nonlinear Dyn. 49, 251–257 (2007)CrossRefGoogle Scholar
  22. 22.
    Melicio, R., Mendes, V.M.F., ao, J.P.S.C.: A pitch control malfunction analysis for wind turbines with permanent magnet synchronous generator and full-power converters: proportional integral versus fractional-order controllers. Electric Power Components Syst. 38, 387–406 (2010)CrossRefGoogle Scholar
  23. 23.
    Melicio, R., Valério, D., Mendes, V.: Fractional control of an offshore wind system. In: Proceedings of The International Conference on Fractional Differentiation and its Applications, pp. 1–6. Amman (2018)Google Scholar
  24. 24.
    Monje, C.A., Vinagre, B.M., Feliu, V., Chen, Y.Q.: Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng. Pract. 16, 798–812 (2008)CrossRefGoogle Scholar
  25. 25.
    Nanou, I.S., Papathanassiou, G.N.P.S.A.: Assessment of communication-independent grid code compatibilitysolutions for vschvdc connected offshore wind. Electric Power Syst. Res. 121, 28–51 (2015)Google Scholar
  26. 26.
    Oustaloup, A., Levron, F., Matthieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiatot: characterization and synthesis. IEEE Trans. Circuit. Syst. I: Funda. Theory Appl. 47, 25–39 (2000)CrossRefGoogle Scholar
  27. 27.
    Podlubny, I.: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  28. 28.
    Robison, R.P., Sengupta, M., Rauch, D.: Intelligent energy industrial systems 4.0. IT Professional 17, 17–24 (2015)CrossRefGoogle Scholar
  29. 29.
    Roddier, D., Cermelli, C., Aubault, A., Weinstein, A.: Windfloat: a floating foundation for offshore wind turbines. J. Renew. Sustain. Energy 2(3), 033,104 (2010)CrossRefGoogle Scholar
  30. 30.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)zbMATHGoogle Scholar
  31. 31.
    Seixas, M., Melicio, R., Mendes, V.F.M.: Offshore wind energy system with DC transmission discrete mass: modeling and simulation. Electr. Power Compon. Syst. 44, 2271–2284 (2016)CrossRefGoogle Scholar
  32. 32.
    Seixas, M., Melicio, R., Mendes, V.F.M., Couto, C.: Simulation of OWES with five-level converter linked to the grid: harmonic assessment. In: Proceedings of the 9th IEEE International Conference on Compatibility and Power Electronics, pp. 126–131. Lisbon, Portugal (2015)Google Scholar
  33. 33.
    Seixas, M., Melicio, R., Mendes, V.M.F.: Offshore wind turbine simulation: multibody drive train. Back-to-back NPC (neutral point clamped) converters. Fractional-order control. Energy 69, 357–369 (2014)CrossRefGoogle Scholar
  34. 34.
    Seixas, M., Melicio, R., Mendes, V.M.F.: Simulation of rectifier voltage malfunction on OWECS, four-level converter, HVDC light link: smart grid context tool. Energy Convers. Manag. 97, 140–153 (2015)CrossRefGoogle Scholar
  35. 35.
    Seixas, M., Melicio, R., Mendes, V.M.F., Couto, C.: Blade pitch control malfunction simulation in a wind energy conversion system with MPC five-level converter. Renew. Energy 89, 339–350 (2016)CrossRefGoogle Scholar
  36. 36.
    Seixas, M., Mendes, V., Melicio, R.: Ride through fault on the rectifier controller of an offshore wind system aided by VRFB. In: Proceedings of the IEEE International Symposium on Power Electronics, Electrical Drives and Motion, pp. 925–930. Amalfi (2018)Google Scholar
  37. 37.
    Gryning, S.M.P., Wu, Q., Blanke, M., Niemann, H.H., Andersen, K.P.H.: Wind turbine inverter robust loop-shaping control subject to grid interaction effects. IEEE Trans. Sustain. Energy 7, 41–50 (2016)CrossRefGoogle Scholar
  38. 38.
    Valrio, D., da Costa, J.S.: An Introduction to Fractional Control. IET, Stevenage (2013)Google Scholar
  39. 39.
    Yang Z.C.Y.: A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems. IEEE Renew. Sustain. Energy Rev. 66, 345–359 (2016)CrossRefGoogle Scholar
  40. 40.
    Zhao, H., Wu, Q., Wang, J., Lui, Z., Shahidehpour, M., Xue, Y.: Combined active and reactive power control of wind farms based on model predictive control. IEEE Trans. Energy Convers. 16, 86–803 (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rui Melicio
    • 1
    • 2
    • 3
    Email author
  • Duarte Valério
    • 2
  • V. M. F. Mendes
    • 3
    • 4
    • 5
  1. 1.ICT, Instituto de Ciências da Terra, Universidade de ÉvoraEvoraPortugal
  2. 2.IDMEC, Instituto Superior Técnico, Universidade de LisboaLisbonPortugal
  3. 3.Departmento de Física, Escola de Ciências e TecnologiaUniversidade de ÉvoraÉvoraPortugal
  4. 4.Department of Electrical Engineering and AutomationInstituto Superior de Engenharia de LisboaLisbonPortugal
  5. 5.CISE, Electromechatronic Systems Research Centre, Universidade da Beira InteriorCovilhaPortugal

Personalised recommendations