Quantum Symmetry of Classical Spaces

  • Debashish GoswamiEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 302)


We give a brief overview of generalized symmetry of classical spaces (manifolds/metric spaces/varieties etc.) in terms of (co)actions of Hopf algebras, both in the algebraic and the analytic set-up.


Compact quantum group Quantum isometry group Riemannian manifold Smooth action 

Subject classification:

81R50 81R60 20G42 58B34 


  1. 1.
    Banica, T.: Quantum automorphism groups of small metric spaces. Pac. J. Math. 219(1), 27–51 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Banica, T.: Quantum automorphism groups of homogeneous graphs. J. Funct. Anal. 224(2), 243–280 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Banica, T., Bichon, J.: Quantum groups acting on 4 points. J. Reine Angew. Math. 626, 75–114 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Banica, T., Bichon, J., Collins, B.: Quantum permutation groups: a survey. noncommutative harmonic analysis with applications to probability. Polish Acad. Sci. Inst. Math. 78, 13–34. Banach Center Publications, Warsaw (2007)Google Scholar
  5. 5.
    Banica, T., Moroianu, S.: On the structure of quantum permutation groups. Proc. Am. Math. Soc. 135(1), 21–29 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bichon, J.: Quantum automorphism groups of finite graphs. Proc. Am. Math. Soc. 131(3), 665–673 (2003)Google Scholar
  7. 7.
    Bichon, J.: Algebraic quantum permutation groups. Asian-Eur. J. Math. 1(1), 1–13 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Connes, A.: Noncommutative Geometry. Academic Press, London, New York (1994)zbMATHGoogle Scholar
  9. 9.
    Drinfeld, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, Berkeley (1986)Google Scholar
  10. 10.
    Drinfeld, V.G.: Quasi-Hopf algebras. Leningr. Math. J. 1, 1419–1457 (1990)MathSciNetGoogle Scholar
  11. 11.
    Etingof, P., Walton, C.: Semisimple hopf actions on commutative domains. Adv. Math. 251, 47–61 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Goswami, D.: Quantum group of isometries in classical and non commutative geometry. Commun. Math. Phys. 285(1), 141–160 (2009)CrossRefGoogle Scholar
  13. 13.
    Goswami, D.: Non-existence of genuine (compact) quantum symmetries of compact, connected smooth manifolds. preprint (2018)Google Scholar
  14. 14.
    Goswami, D., Bhowmick, J.: Quantum Isometry Groups. Springer, Infosys Series (2017)zbMATHGoogle Scholar
  15. 15.
    Goswami, D., Joardar, S.: Non-existence of faithful isometric action of compact quantum groups on compact, connected Riemannian manifolds. Geom. Funct. Anal. 28(1), 146–178 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Huang, H.: Faithful compact quantum group actions on connected compact metrizable spaces. J. Geom. Phys. 70, 232–236 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jimbo, M.: Quantum R-matrix for the generalized Toda system. Commun. Math. Phys. 10, 63–69 (1985)Google Scholar
  18. 18.
    Jimbo, M.: A q-diff erence analogue of U(g) and the Yang-Baxter equation. Lett. Math. Phys. 10(1), 63–69 (1985)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kustermans, J., Vaes, S.: Locally compact quantum groups. Ann. Sci. Ecole Norm. super. 33(6), 837–934 (2000)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kustermans, J., Vaes, S.: Locally compact quantum groups in the von Neumann algebraic setting. Math. Scand. 92(1), 68–92 (2003)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Manin, Y: Some remarks on Koszul algebras and quantum groups. Ann. Inst. Fourier Grenoble 37(4), 191–205 (1987)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Manin, Y.: Quantum Groups and Non-commutative Geometry. CRM, Montreal (1988)zbMATHGoogle Scholar
  23. 23.
    Masuda, T., Nakagami, Y., Woronowicz, S.L.: A \(C^{\ast }\)-algebraic framework for quantum groups. Int. J. Math. 14(9), 903–1001 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Reshetikhin, N.Y., Takhtajan, L.A., Faddeev, L.D.: Quantization of Lie groups and Lie algebras. Algebra i analiz 1, 178 (1989) (Russian), English translation in Leningrad Math. J. 1Google Scholar
  25. 25.
    Soibelman, Y.S., Vaksman, L.L.: On some problems in the theory of quantum groups. representation theory and dynamical systems. Adv. Soviet Math. Am. Math. Soc. Providence, RI, 9, 3–55 (1992)Google Scholar
  26. 26.
    Walton, C., Wang, X.: On quantum groups associated to non-noetherian regular algebras of dimension 2. arXiv:1503.0918
  27. 27.
    Wang, S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195, 195–211 (1998)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Woronowicz, S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111(4), 613–665 (1987)Google Scholar
  29. 29.
    Woronowicz, S.L.: Compact quantum groups. In: Connes, A. (ed.) et al. Symétries Quantiques (Quantum symmetries) (Les Houches), p. 1998. Elsevier, Amsterdam (1995)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Indian Statistical InstituteKolkataIndia

Personalised recommendations