Advertisement

The Use of Reaction Network Theory for Finding Network Motifs in Oscillatory Mechanisms and Kinetic Parameter Estimation

  • Igor SchreiberEmail author
  • Vuk Radojković
  • František Muzika
  • Radovan Jurašek
  • Lenka Schreiberová
Conference paper
  • 38 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 302)

Abstract

Stoichiometric network analysis (SNA) is a method of studying stability of steady states of reaction systems obeying mass action kinetics. Reaction rates are expressed as a linear combination of elementary subnetworks with nonnegative coefficients (convex parameters) as opposed to standard formulation using rate coefficients and input parameters (kinetic parameters). We present examples of core reaction subnetworks that provide for oscillatory instability. Frequently there is an autocatalytic cycle in the core subnetwork, but in biochemical reactions such cycle is often replaced by a pathway called competitive autocatalysis. Rate coefficients in complex networks are often only partly known. We present a method of estimating the unknown rate coefficients, in which known/measured kinetic parameters and steady state concentrations are used to determine convex parameters, which in turn allows for determination of unknown rate coefficients by solving a set of constraint equations.

Keywords

Stoichiometric networks Oscillating (bio) chemical reactions Dynamical instabilities Parameter estimation 

Notes

Acknowledgements

This work has been supported by the grant 18-24397S from the Czech Science Foundation.

References

  1. 1.
    Albers, C.J., Critchley, F., Gower, J.C.: Quadratic minimisation problems in statistics. J. Multivar. Anal. 102(3), 698–713 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cerveny, J., Salagovic, J., Muzika, F., Safranek, D., Schreiber, I.: Influence of circadian clocks on optimal regime of central C-N metabolism of cyanobacteria. In: Mishra, A.K., Tiwari, D.N., Rai, A.N. (eds.) Cyanobacteria: From Basic Science to Applications, Chap. 9, pp. 193–206. Academic Press, London (2019)CrossRefGoogle Scholar
  3. 3.
    Clarke, B.L.: Stability of complex reaction networks. Adv. Chem. Phys. 43, 1–278 (1980)Google Scholar
  4. 4.
    Eiswirth, M., Bürger, J., Strasser, P., Ertl, G.: Oscillating Langmuir-Hinshelwood mechanisms. J. Phys. Chem. 100(49), 19118–19123 (1996)CrossRefGoogle Scholar
  5. 5.
    Eiswirth, M., Freund, A., Ross, J.: Mechanistic classification of chemical oscillators and the role of species. Adv. Chem. Phys. 80, 127–199 (1991)Google Scholar
  6. 6.
    Errami, H., Eiswirth, M., Grigoriev, D., Seiler, W.M., Sturm, T., Weber, A.: Detection of Hopf bifurcations in chemical reaction networks using convex coordinates. J. Comput. Phys. 291, 279–302 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gonze, D.: Modeling circadian clocks: from equations to oscillations. Cent. Eur. J. Biol. 6(5), 699–711 (2011)Google Scholar
  8. 8.
    Hadac, O., Muzika, F., Nevoral, V., Pribyl, M., Schreiber, I.: Minimal oscillating subnetwork in the Huang-Ferrell model of the MAPK cascade. Plos One 12(6) (2017)CrossRefGoogle Scholar
  9. 9.
    Hadley, G.: Linear Programming. Addison-Wesley Publishing Company (1962)Google Scholar
  10. 10.
    Marsden, J.E., McCracken, M.: The Hopf Bifurcation and Its Applications. Springer, New York (1976)CrossRefGoogle Scholar
  11. 11.
    Muzika, F., Jurasek, R., Schreiberova, L., Radojkovic, V., Schreiber, I.: Identifying the oscillatory mechanism of the glucose oxidase-catalase coupled enzyme system. J. Phys. Chem. A 121(40), 7518–7523 (2017)CrossRefGoogle Scholar
  12. 12.
    Noyes, R.M., Field, R.J., Koros, E.: Oscillations in chemical systems. 1. Detailed mechanism in a system showing temporal oscillations. J. Am. Chem. Soc. 94(4), 1394–1395 (1972)CrossRefGoogle Scholar
  13. 13.
    Palsson, B.: Systems Biology: Properties of Reconstructed Networks. Cambridge University Press, Cambridge, New York (2006)CrossRefGoogle Scholar
  14. 14.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran. Cambridge University Press, Cambridge (1986, 1992)Google Scholar
  15. 15.
    Radojkovic, V., Schreiber, I.: Constrained stoichiometric network analysis. PCCP 20, 9910–9921 (2018)CrossRefGoogle Scholar
  16. 16.
    Ross, J., Schreiber, I., Vlad, M.O.: Determination of Complex Reaction Mechanisms. Oxford University Press Inc., New York (2006)Google Scholar
  17. 17.
    Schilling, C.H., Letscher, D., Palsson, B.Ø.: Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203(3), 229–248 (2000)CrossRefGoogle Scholar
  18. 18.
    Schreiber, I., Ross, J.: Mechanisms of oscillatory reactions deduced from bifurcation diagrams. J. Phys. Chem. A 107(46), 9846–9859 (2003)CrossRefGoogle Scholar
  19. 19.
    Zhabotinskii, A.M.: Periodic course of the oxidation of malonic acid in a solution (studies on the kinetics of Belousov’s reaction). Biofizika 9, 306–11 (1964)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Igor Schreiber
    • 1
    Email author
  • Vuk Radojković
    • 1
  • František Muzika
    • 1
  • Radovan Jurašek
    • 1
  • Lenka Schreiberová
    • 1
  1. 1.Department of Chemical EngineeringUniversity of Chemistry and Technology, PraguePraha 6Czech Republic

Personalised recommendations