Advertisement

Microbial Desulphurization of Refractory Organic Sulphur Compounds from Transportation Fuels

  • Pushpita Das
  • Lepakshi BarboraEmail author
  • Vijayanand S. Moholkar
Chapter
Part of the Energy, Environment, and Sustainability book series (ENENSU)

Abstract

The sulphur content in crude oil ranges from 1000 to 3000 ppm but the environmental regulations require less than 10 ppm sulphur to meet the stringent protocols on reduced SO2 emission by transportation fuels. Hydrodesulphurization (HDS), which is the most employed technology to reduce sulphur (S) suffers from severe and hazardous operation conditions, inefficiency, high capital and operating costs, generation of the hazardous H2S end product etc. During the last decades, several advances have been made in developing chemical, physical and biological technologies complementary to HDS to achieve ultra-low sulphur fuel. Biodesulphurization (BDS) is one of these emerging nonconventional technologies that can be merged with other desulphurization technologies, such as the oxidative desulphurization process, to produce S-free fuels. The BDS process involves the use of free or immobilized microorganisms, their enzymes or cellular extracts, as catalysts to remove the S present in fuels. The most extensively studied and utilized microorganisms for BDS processes are Gram-positive bacteria. Gram-negative bacteria with high tolerance to organic solvents and metals, broad metabolic versatility and easy genetic manipulation also make them ideal candidates for the purpose. This chapter reviews research findings of utilization of mesophilic, thermophilic and Gram-negative bacteria for desulphurization of gasoline, jet and diesel fuel to be used as transportation fuel.

Keywords

Biodesulphurization Dibenzothiophene Diesel oil Bacteria Thermophilic Gram-negative 

References

  1. Alkhalili BE, Yahya A, Ibrahim N, Ganapathy B (2017) Biodesulphurization of Sour Crude Oil. Mod Appl Sci 11(9):104–113CrossRefGoogle Scholar
  2. Bhatia S, Sharma DK (2010) Biodesulphurization of dibenzothiophene, its alkylated derivatives and crude oil by a newly isolated strain Pantoea agglomerans D23W3. Biochem Eng J 50(3):104–109CrossRefGoogle Scholar
  3. Bhatia S, Sharma DK (2012) Thermophilic desulphurization of dibenzothiophene and different petroleum oils by Klebsiella sp. 13T. Environ Sci Pollut Res 19(8):3491–3497CrossRefGoogle Scholar
  4. Bordoloi NK, Rai SK, Chaudhuri MK, Mukherjee AK (2014) Deep-desulphurization of dibenzothiophene and its derivatives present in diesel oil by a newly isolated bacterium Achromobacter sp. to reduce the environmental pollution from fossil fuel combustion. Fuel Process Technol 119:236–244CrossRefGoogle Scholar
  5. Castorena G, Suárez C, Valdez I, Amador G, Fernández L, Le Borgne S (2002) Sulphur-selective desulphurization of dibenzothiophene and diesel oil by newly isolated Rhodococcus sp. strains. FEMS Microbiol Lett 215(1):157–161CrossRefGoogle Scholar
  6. Chang JH, Chang YK, Cho KS, Chang HN (2000) Desulphurization of model and diesel oils by resting cells of Gordona sp. Biotechnol Lett 22(3):193–196CrossRefGoogle Scholar
  7. Chang JH, Kim YJ, Lee BH, Cho KS, Ryu HW, Chang YK, Chang HN (2001) Production of a desulphurization biocatalyst by two-stage fermentation and its application for the treatment of model and diesel oils. Biotechnol Prog 17(5):876–880CrossRefGoogle Scholar
  8. Duissenov D (2012) Production and processing of high sulphur crude and associated gas. TPG4510 Petroleum Production specialization project (NTNU), 1–45Google Scholar
  9. Duissenov D (2013) Production and processing of sour crude and natural gas-challenges due to increasing stringent regulations. Master’s thesis, Institutt for petroleumsteknologi og anvendt geofysikkGoogle Scholar
  10. El-Gendy NS, Nassar HN (2018) Biodesulfurization in petroleum refining (Chapter 1). WileyGoogle Scholar
  11. Fatahi A, Sadeghi S (2017) Biodesulphurization of gasoline by Rhodococcus erythropolis supported on polyvinyl alcohol. Lett Appl Microbiol 64(5):370–378CrossRefGoogle Scholar
  12. Folsom BR, Schieche DR, DiGrazia PM, Werner J, Palmer S (1999) Microbial desulphurization of alkylated dibenzothiophenes from a hydrodesulphurized middle distillate by Rhodococcus erythropolis I-19. Appl Environ Microbiol 65(11):4967–4972Google Scholar
  13. Furuya T, Ishii Y, Noda KI, Kino K, Kirimura K (2003) Thermophilic biodesulphurization of hydrodesulphurized light gas oils by Mycobacterium phlei WU-F1. FEMS Microbiol Lett 221(1):137–142CrossRefGoogle Scholar
  14. Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14(13):1705CrossRefGoogle Scholar
  15. Grossman MJ, Lee MK, Prince R, Garrett KK, George GN, Pickering IJ (1999) Microbial desulphurization of a crude oil middle-distillate fraction: analysis of the extent of sulphur removal and the effect of removal on remaining sulphur. Appl Environ Microbiol 65(1):181–188Google Scholar
  16. Grossman MJ, Lee MK, Prince RC, Minak-Bernero V, George GN, Pickering IJ (2001) Deep desulphurization of extensively hydrodesulphurized middle distillate oil by Rhodococcus sp. strain ECRD-1. Appl Environ Microbiol 67(4):1949–1952CrossRefGoogle Scholar
  17. Gunam IBW, Yaku Y, Hirano M, Yamamura K, Tomita F, Sone T, Asano K (2006) Biodesulphurization of alkylated forms of dibenzothiophene and benzothiophene by Sphingomonas subarctica T7b. J Biosci Bioeng 101(4):322–327CrossRefGoogle Scholar
  18. Guobin S, Jianmin X, Huaiying Z, Huizhou L (2005) Deep desulphurization of hydrodesulphurized diesel oil by Pseudomonas delafieldii R-8. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 80(4):420–424Google Scholar
  19. Guobin S, Huaiying Z, Jianmin X, Guo C, Wangliang L, Huizhou L (2006) Biodesulphurization of hydrodesulphurized diesel oil with Pseudomonas delafieldii R-8 from high density culture. Biochem Eng J 27(3):305–309CrossRefGoogle Scholar
  20. International Energy Agency (2017) Key world energy statistics. https://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf. Retrieved on 12 Jan 2018
  21. Ishii Y, Kozaki S, Furuya T, Kino K, Kirimura K (2005) Thermophilic biodesulphurization of various heterocyclic sulphur compounds and crude straight-run light gas oil fraction by a newly isolated strain Mycobacterium phlei WU-0103. Curr Microbiol 50(2):63–70CrossRefGoogle Scholar
  22. Klein J, Van Afferden M, Pfeifer F, Schacht S (1994) Microbial desulphurization of coal and oil. Fuel Process Technol 40(2–3):297–310CrossRefGoogle Scholar
  23. Konishi J, Ishii Y, Onaka T, Okumura K, Suzuki M (1997) Thermophilic carbon-sulphur-bond-targeted biodesulphurization. Appl Environ Microbiol 63(8):3164–3169Google Scholar
  24. Labana S, Pandey G, Jain RK (2005) Desulphurization of dibenzothiophene and diesel oils by bacteria. Lett Appl Microbiol 40(3):159–163CrossRefGoogle Scholar
  25. Le Borgne S, Quintero R (2003) Biotechnological processes for the refining of petroleum. Fuel Process Technol 81(2):155–169CrossRefGoogle Scholar
  26. Li FL, Xu P, Ma CQ, Luo LL, Wang XS (2003) Deep desulphurization of hydrodesulphurization-treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS Microbiol Lett 223(2):301–307CrossRefGoogle Scholar
  27. Li F, Xu P, Feng J, Meng L, Zheng Y, Luo L, Ma C (2005) Microbial desulfurization of gasoline in a Mycobacterium goodii X7B immobilized-cell system. Appl Environ Microbiol 71(1):276–281CrossRefGoogle Scholar
  28. Li F, Zhang Z, Feng J, Cai X, Xu P (2007a) Biodesulphurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B. J Biotechnol 127(2):222–228CrossRefGoogle Scholar
  29. Li YG, Ma J, Zhang QQ, Wang CS, Chen Q (2007b) Sulphur-Selective Desulphurization of Dibenzothiophene and Diesel Oil by Newly Isolated Rhodococcus erythropolisNCC-1. Chin J Chem 25(3):400–405CrossRefGoogle Scholar
  30. Li GQ, Li SS, Qu SW, Liu QK, Ma T, Zhu L, Liang FL, Liu RL (2008) Improved biodesulphurization of hydrodesulphurized diesel oil using Rhodococcus erythropolis and Gordonia sp. Biotechnol Lett 30(10):1759CrossRefGoogle Scholar
  31. Maghsoudi S, Vossoughi M, Kheirolomoom A, Tanaka E, Katoh S (2001) Biodesulphurization of hydrocarbons and diesel fuels by Rhodococcus sp. strain P32C1. Biochem Eng J 8(2):151–156CrossRefGoogle Scholar
  32. Malik KA (1978) Microbial removal of organic sulphur from crude oil and the environment: some new Perspectives. Process Biochem 13:10–13Google Scholar
  33. Martínez I, Mohamed MES, Santos VE, García JL, García-Ochoa F, Díaz E (2017) Metabolic and process engineering for biodesulphurization in Gram-negative bacteria. J Biotechnol 262:47–55CrossRefGoogle Scholar
  34. Mingfang L, Jianmin X, Zhongxuan G, Huizhou L, Jiayong C (2003) Microbial desulphurization of dibenzothiophene and 4, 6-dimethyldibenzothiophene in dodecane and straight-run diesel oil. Korean J Chem Eng 20(4):702–704CrossRefGoogle Scholar
  35. Monticello DJ (2000) Biodesulphurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11:540–546CrossRefGoogle Scholar
  36. Ohshiro T, Izumi Y (1999) Microbial desulphurization of organic sulphur compounds in petroleum. Biosci Biotechnol Biochem 63(1):1–9CrossRefGoogle Scholar
  37. Oldfield C, Pogrebinsky O, Simmonds J, Olson ES, Kulpa CF (1997) Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968). Microbiology 143(9):2961–2973CrossRefGoogle Scholar
  38. Piddington CS, Kovacevich BR, Rambosek J (1995) Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulphurization operon of Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 61:468–475Google Scholar
  39. Rhee SK, Chang JH, Chang YK, Chang HN (1998) Desulphurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl Environ Microbiol 64(6):2327–2331Google Scholar
  40. Ryabov VD (2009) Oil and gas chemistry. Forum, MoscowGoogle Scholar
  41. Soleimani M, Bassi A, Margaritis A (2007) Biodesulphurization of refractory organic sulphur compounds in fossil fuels. Biotechnol Adv 25(6):570–596CrossRefGoogle Scholar
  42. Song C, Ma X (2003) New design approaches to ultra-clean diesel fuels by deep desulphurization and deep dearomatization. Appl Catal B 41(1–2):207–238CrossRefGoogle Scholar
  43. Stanislaus A, Marafi A, Rana MS (2010) Recent advances in the science and technology of ultralow sulphur diesel (ULSD) production. Catal Today 153(1–2):1–68CrossRefGoogle Scholar
  44. Watanabe K, Noda K, Maruhashi K (2003) Enhanced desulphurization in a transposon-mutant strain of Rhodococcus erythropolis. Biotechnol Lett 25:1299–1304CrossRefGoogle Scholar
  45. Yang J, Hu Y, Zhao D, Wang S, Lau PC, Marison IW (2007) Two-layer continuous-process design for the biodesulphurization of diesel oils under bacterial growth conditions. Biochem Eng J 37(2):212–218CrossRefGoogle Scholar
  46. Yu B, Ma C, Zhou W, Wang Y, Cai X, Tao F, Zhang Q, Tong M, Qu J, Xu P (2006a) Microbial desulphurization of gasoline by free whole-cells of Rhodococcus erythropolis XP. FEMS Microbiol Lett 258(2):284–289CrossRefGoogle Scholar
  47. Yu B, Xu P, Shi Q, Ma C (2006b) Deep desulphurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain. Appl Environ Microbiol 72(1):54–58CrossRefGoogle Scholar
  48. Zhang Q, Tong MY, Li YS, Gao HJ, Fang XC (2007) Extensive desulphurization of diesel by Rhodococcus erythropolis. Biotech Lett 29(1):123–127CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Pushpita Das
    • 1
  • Lepakshi Barbora
    • 1
    Email author
  • Vijayanand S. Moholkar
    • 1
    • 2
  1. 1.Centre for EnergyIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Department of Chemical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations