Post Enucleation Orbital Implants

  • C. Umadevi
  • Bipasha MukherjeeEmail author


Enucleation is indicated in unsalvageable intraocular tumors. Primary implant of adequate size should be considered to prevent socket contracture in children. Meticulous surgery, proper implant selection, optimal volume replacement, custom made prostheses, and periodic examination is needed to achieve an excellent cosmetic appearance in a growing child. Numerous research and innovations are ongoing in anophthalmic socket surgery with regard to novel biomaterials and design to improve outcome. Multidisciplinary team work with oncologist, oculoplasty surgeon, ocularist, ocular geneticist and psychologist are needed to achieve an aesthetically pleasing result in these children.


Orbital implant Porous implant Non-porous implant Dermis fat graft Prosthesis 


  1. 1.
    Jordan DR, Klappler SR. Chap. 18: Orbital implants. In: Clinical ophthalmic oncology, Orbital tumours. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2014. p. 209–16.CrossRefGoogle Scholar
  2. 2.
    Jordan DR, Stephen R, et al. Smith and Nesi’s ophthalmic plastic and reconstructive surgery, vol. 68. 3rd ed. New York: Springer; 2012. p. 1105–28.CrossRefGoogle Scholar
  3. 3.
    Francesco B, Isabel P. Orbital implants: state-of-the-art review with emphasis on biomaterials and recent advances. J Mater Sci Eng. 2016;69:1410–28.CrossRefGoogle Scholar
  4. 4.
    Custer PL, Trinkaus KM. Volumetric determination of enucleation implant size. Am J Ophthalmol. 1999;128:489–94.CrossRefGoogle Scholar
  5. 5.
    Kaltreider SA, Lucarelli MJ. A simple algorithm for selection of implant size for enucleation and evisceration. Ophthal Plast Reconstr Surg. 2002;18:336–41.CrossRefGoogle Scholar
  6. 6.
    Bentley RP, Sgouros S, Natarajan K, et al. Normal changes in orbital volume during childhood. J Neurosurg. 2002;96:742–6.CrossRefGoogle Scholar
  7. 7.
    Mourits DL, Moll AC, Bosscha MI, et al. Orbital implants in retinoblastoma patients: 23 years of experience and a review of the literature. Acta Ophthalmol. 2016;94:165–74.CrossRefGoogle Scholar
  8. 8.
    Shields CL, Shields JA, De Potter P. Hydroxyapatite orbital implant after enucleation: experience with initial 100 consecutive cases. Arch Ophthalmol. 1992;110:333–8.CrossRefGoogle Scholar
  9. 9.
    De Potter P, Shields CL, Shields JA, et al. Role of magnetic resonance imaging in the evaluation of the hydroxyapatite orbital implant. Ophthalmology. 1992;99:824–30.CrossRefGoogle Scholar
  10. 10.
    David S, Steven Y, Robert P. Perspective on orbital enucleation implants. Surv Ophthalmol. 2007;52:245–65.Google Scholar
  11. 11.
    Nentwich M, Schebitz K, et al. Dermis fat grafts as primary and secondary orbital implants. Orbit. 2014;33:33–8.CrossRefGoogle Scholar
  12. 12.
    Francesco Q, Sabrina S, Pietro R, et al. Dermis-fat graft in children as primary and secondary orbital implant. Ophthal Plast Reconstr Surg. 2016;32:214–9.CrossRefGoogle Scholar
  13. 13.
    Bosniak SL, Nesi F, Smith BC, et al. A comparison of motility: autogenous dermis-fat vs synthetic spherical implants. Ophthalmic Surg. 1989;20:889–91.Google Scholar
  14. 14.
    Jordan DR, Anderson RL, Nerad JA. A preliminary report on the Universal Implant. Arch Ophthalmol. 1987;105:1726–31.CrossRefGoogle Scholar
  15. 15.
    Huang D, Xu B, Yang Z. Fibrovascular ingrowth into porous polyethylene orbital implants (Medpor) after modified evisceration. Ophthal Plast Reconstr Surg. 2015;31:138–42.CrossRefGoogle Scholar
  16. 16.
    Naik MN, Murthy RK, Honavar SG, et al. Comparison of vascularization of Medpor and Medpor-plus orbital implants: a prospective, randomized study. Ophthal Plast Reconstr Surg. 2007;23:463–7.CrossRefGoogle Scholar
  17. 17.
    Woog JJ, Dresner SC, Lee TS, et al. The smooth surface tunnel porous polyethylene enucleation implant. Ophthalmic Surg Lasers Imaging. 2004;35:358–62.CrossRefGoogle Scholar
  18. 18.
    Mahoney NR, Grant MP, Iliff NT, et al. Exposure rate of smooth surface tunnel porous polyethylene implants after enucleation. Ophthal Plast Reconstr Surg. 2014;30:492–8.CrossRefGoogle Scholar
  19. 19.
    Shevchenko L, Boss J, Shah CT. Alpha sphere as a successful ocular implant in primary enucleation and secondary orbital implant exchange. Orbit. 2013;32:161–5.CrossRefGoogle Scholar
  20. 20.
    Vagefi MR, McMullan TF, Burroughs JR, et al. Orbital augmentation with injectable calcium hydroxyapatite for correction of post enucleation/evisceration socket syndrome. Ophthal Plast Reconstr Surg. 2011;27:90–4.CrossRefGoogle Scholar
  21. 21.
    David R, Steven G, Louise A. The bioceramic orbital implant: experience with 107 implants. Ophthalmic Plast Reconstr Surg. 2003;19:128–35.CrossRefGoogle Scholar
  22. 22.
    Tomb EH, Gearhart DF, et al. A new magnetic implant. Arch Ophthalmol. 1954;52:763–8.CrossRefGoogle Scholar
  23. 23.
    Suter AJ, Molteno ACB, Bevin T, et al. Long term follow up of bone derived hydroxyapatite orbital implants. Br J Ophthalmol. 2002;86:1287–92.CrossRefGoogle Scholar
  24. 24.
    Custer PL, Kennedy RH, Woog JJ, et al. Orbital implants in enucleation surgery: a report by the American Academy of Ophthalmology. Ophthalmology. 2003;110:2054–61.CrossRefGoogle Scholar
  25. 25.
    Nikolaos T, Augsburger JJ. Enucleation with unwrapped porous and nonporous orbital implants: a 15-year experience. Ophthal Plast Reconstr Surg. 2005;21:331–6.CrossRefGoogle Scholar
  26. 26.
    Kassaee A, Mohsen B, Mohammadreza P. Mersilene mesh versus sclera in wrapping hydroxyapatite orbital implants. Ophthal Plast Reconstr Surg. 2006;22:41–4.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Orbit, Oculoplasty, Reconstructive and Aesthetic Services, Medical Research Foundation, Sankara NethralayaChennaiIndia

Personalised recommendations