Advertisement

Biomedical Applications of Zinc Oxide Nanoparticles Synthesized Using Eco-friendly Method

  • S. Rajeshkumar
  • D. Sandhiya
Chapter
  • 29 Downloads

Abstract

Nanotechnology is an emerging area of research and plays a vital role in various fields of application. Consequently, it mainly focused on synthesis of nanoparticles using novel approaches. Among this, synthesis of zinc oxide using biological method plays a unique role in research, such as cost-effective and environment-friendly method. In this review paper, we mainly focused on synthesis of zinc oxide nanoparticles using biological methods such as plant-mediated, bacterial-mediated, fungal-mediated, and algal-mediated method. These biological materials are enriched with biomolecules, and they play a major role in reduction of metals. Based on this, bioreduction capacity of various biological materials used to synthesize zinc oxide nanoparticles under different conditions is also provided in this review. Various instrumental techniques such as Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) are used to characterize the size and functional group present in the nanoparticles, and some other biological techniques are also used to identify the effectiveness of novel-mediated zinc oxide nanoparticles. Finally, this review provides enough detail about the biological-mediated zinc oxide nanoparticles and its functional groups, and biological application; it helps researcher to identify previous results of the study and helps to pave new way for research.

Keywords

Green synthesis zinc oxide nanoparticles Medicine Antimicrobial Characterization 

References

  1. Abinaya M, Vaseeharan B, Divya M, Sharmili A, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2018) Technical note bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J Trace Elem Med Biol 45:93–103PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ahmed S, Annu, Chaudhry SA, Ikram S (2017) Biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J Photochem Photobiol B: Biology 166:272–284PubMedCrossRefPubMedCentralGoogle Scholar
  3. Anbuvannan M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N (2015) Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. Spectrochim Acta A Mol Biomol Spectrosc 143:304–308PubMedCrossRefPubMedCentralGoogle Scholar
  4. Anbuvannana M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N (2015) Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. Mol Biomol Spectrosc 143:304–308CrossRefGoogle Scholar
  5. Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opinion Solid State Mater Sci 12:44CrossRefGoogle Scholar
  6. Asmathunisha N, Kathiresan K (2013) A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B: Bionterfaces 103:283–287CrossRefGoogle Scholar
  7. Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277CrossRefGoogle Scholar
  8. Cauerhff A, Castro GR (2013) Bionanoparticles, a green nanochemistry approach. Electron J Biotechnol 16(3)Google Scholar
  9. Chandrasekaran R, Gnanasekar S, Seetharaman P, Keppanan R, Arockiaswamy W, Sivaperumal S (2016) Formulation of Carica papaya latex-functionalized silve rnanoparticles for its improved antibacterial and anticancer applications. J Mol Liq 219:232–238CrossRefGoogle Scholar
  10. Chinnammal Janaki E, Sailatha SG (2015) Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 144:17–22PubMedCrossRefPubMedCentralGoogle Scholar
  11. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346PubMedCrossRefPubMedCentralGoogle Scholar
  12. Dhandapani P, Siddarth AS, Kamalasekaran S, Maruthamuthu S, Rajagopal G (2014) Bio-approach: Ureolytic bacteria mediated synthesis of ZnO nanocrystals on cotton fabric and evaluation of their antibacterial properties. Carbohydr Polym 103:448–455PubMedCrossRefGoogle Scholar
  13. Dhanemozhi AC, Rajeswari V, Sathyajothi S (2017) Green synthesis of zinc oxide nanoparticle using green tea leaf extract for Supercapacitor application. Mater Today: Proc 4:660–667Google Scholar
  14. Do Kim K, Choi DW, Choa Y-H, Kim HT (2007) Optimization of parameters for the synthesis of zinc oxide nanoparticles by Taguchi robust design method. Colloids Surf A: Physicochem Eng Asp 311:170–173CrossRefGoogle Scholar
  15. Dobrucka R, Dugaszewska J (2016) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci 23:517–523PubMedCrossRefGoogle Scholar
  16. Dumbrava A, Berger D, Matei C, Radu MD, Gheorghe E (2018) Characterization and applications of a new composite material obtained by green synthesis, through deposition of zinc oxide onto calcium carbonate precipitated in green seaweeds extract. Ceram Int 44:4931–4936CrossRefGoogle Scholar
  17. El-Naggar ME, Shaarawy S, Hebeish AA (2018) Multifunctional properties of cotton fabrics coated with in situ synthesis of zinc oxide nanoparticles capped with date seed extract. Carbohydr Polym 181:307–316PubMedCrossRefGoogle Scholar
  18. Elumalai K, Velmurugan S (2015) Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica, (L.). Appl Surf Sci 345:329–333CrossRefGoogle Scholar
  19. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S (2015a) Green synthesis of zinc oxide nanoparticles using Moringa Oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim Acta A 143:158e164CrossRefGoogle Scholar
  20. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Adaikala Raj G (2015b) Plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity. Adv Powder Technol 26:1639–1651CrossRefGoogle Scholar
  21. Gandhi PR, Jayaseelan C, Mary RR, Mathivanan D, Suseem SR (2017) Acaricidal, pediculicidal and larvicidal activity of synthesized ZnO nanoparticles using Momordica charantia leaf extract against blood feeding parasites. Exp Parasitol 181:47e56CrossRefGoogle Scholar
  22. Gunalan S, Sivaraj R, Rajendran V (2012a) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci: Mater Int 22(6):693–700CrossRefGoogle Scholar
  23. Gunalan S, Sivaraj R, Rajendran V (2012b) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Mater Int 22(6):693–700Google Scholar
  24. Hamminga GM, Mul G, Moulijin JA (2004) Effects of impregnation with styrene and nano-zinc oxide on fire-retarding, physical, and mechanical properties of poplar wood. Chem Eng Sci 59:5479CrossRefGoogle Scholar
  25. Hussein MZ, Azmin WHWN, Mustafa M, Yahaya AH (2009) Bacillus cereus as a biotemplating agent for the synthesis of zinc oxide with raspberry- and plate-like structures. J Inorg Biochem 103:1145–1150PubMedCrossRefGoogle Scholar
  26. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638e2650CrossRefGoogle Scholar
  27. Ishwarya R, Vaseeharan B, Kalyani S, Banumathi B, Govindarajan M, Alharbid NS, Kadaikunnan S, Al-anbrd MN, Khaled JM, Benelli G (2018) Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol B Biol 178:249–258CrossRefGoogle Scholar
  28. Ismail B, Nampoothiri KM (2010) Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Arch Microbiol 192:1049–1057PubMedCrossRefGoogle Scholar
  29. Jamdagni P, Khatri P, Rana JS (2016) Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ Sci 30(2):168–175CrossRefGoogle Scholar
  30. Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver carbon composite materials for optically functional thin film coatings. Adv Mater 12(6):407–409CrossRefGoogle Scholar
  31. Kandale A, Meena AK, Rao MM, Panda P, Mangal AK, Reddy G et al (2011) Marine algae: anintroduction, foodvalue andmedicinaluses. J Pharm Res 4(1):219e221Google Scholar
  32. Karthik S, Siva P, Balu KS, Suriyaprabha R, Rajendran V, Maaza M (2017) Acalypha indica–mediated green synthesis of ZnO nanostructures under differential thermal treatment: effect on textile coating, hydrophobicity, UV resistance, and antibacterial activity. Adv Powder Technol 28:3184–3194CrossRefGoogle Scholar
  33. Kato H (2011) In vitro assays: tracking nanoparticles inside cells. Nat Nanotechnol 6(3):139–140PubMedCrossRefPubMedCentralGoogle Scholar
  34. Kaviya S, Kabila S, Jayasree KV (2017) Hexagonal bottom-neck ZnO nano pencils: a study of structural, optical and antibacterial activity. Mater Lett 204:57–60CrossRefGoogle Scholar
  35. Kayaci F, Vempati S, Donmez I, Biyikli N, Uyar T (2014) Nanoscale 6:10224–10234PubMedCrossRefPubMedCentralGoogle Scholar
  36. Kim KD, Kim HT (2002) Preparation of silica nanoparticles determination of the optimal synthesis conditions for small and uniform particles. Colloids and surfaces a physicochemical and engineering aspects. J Sol Gel Sci Technol 25:183CrossRefGoogle Scholar
  37. Kim KD, Lee TJ, Kim HT (2003) Dynamics of population code for working memory in the prefrontal cortex. Colloids Surf A Physicochem Eng Asp 224:1CrossRefGoogle Scholar
  38. Kim KD, Han DN, Lee JB, Kim HT (2006) New and future developments in catalysis: solar photocatalysis. Scripta Mater 54:143CrossRefGoogle Scholar
  39. Kundu D, Hazra C, Chatterjee A, Chaudhari A, Mishra S (2014) Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J Photochem Photobiol B Biol 140:194–204CrossRefGoogle Scholar
  40. Li WJ, Shi EW, Zheng YQ, Yin ZW (2001) Hydrothermal preparation of nanometer ZnO powders. J Mater Sci Lett 20:1381CrossRefGoogle Scholar
  41. Li X, Xu H, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011, Article ID 270974, 16 pagesGoogle Scholar
  42. Lin HM, Tzeng SJ, Hsiau PJ, Tsai WL (1998) Low temperature electronics and low temperature cofired ceramic. Nanostruct Mater 10:465CrossRefGoogle Scholar
  43. Luechinger NA, Grass RN, Athanassiou EK, Stark WJ (2010) Bottom-up fabrication of metal/metal nano composites from nanoparticles of immiscible metals. Chem Mater 22(1):155–160CrossRefGoogle Scholar
  44. Madhumitha G, Elango G, Roopan SM (2016) Biotechnological aspects of ZnOnanoparticles: overview on synthesis and its applications. Appl Microbiol Biotechnol 100:571–581PubMedCrossRefPubMedCentralGoogle Scholar
  45. Mahendra C, Murali M, Manasa G, Ponnamma P, Abhilash MR, Lakshmeesha TR, Satish A, Amruthesh KN, Sudarshana MS (2017) Antibacterial and antimitotic potential of bio-fabricated zinc oxide nanoparticles of Cochlospermum religiosum (L.). Microb Pathog 110:620e629CrossRefGoogle Scholar
  46. Manilal A, Thajuddin N, Selvin J, Idhayadhulla A, Kumar RS, Sujith S (2011) In vitro mosquito larvicidal activity of marine algae against the human vectors, Culex quinquefasciatus (Say) and Aedes aegypti (Linnaeus) (Diptera: Culicidae). Int J Zool Res 7(3):272e278CrossRefGoogle Scholar
  47. Manna J, Goswami S, Shilpa N, Sahu N, Rana RK (2015) Biomimetic method to assemble nanostructured ag@ZnO on cotton fabrics: application as self-cleaning flexible materials with visible-light Photocatalysis and antibacterial activities. ACS Appl Mater Interfaces 7:8076–8082PubMedCrossRefPubMedCentralGoogle Scholar
  48. Matinisea N, Fukua XG, Kaviyarasua K, Mayedwa N, Maaza M (2017) ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation. Appl Surf Sci 406:339–347CrossRefGoogle Scholar
  49. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517CrossRefGoogle Scholar
  50. Molinski TF, Dalisay DS, Lievens SL, Saludes JP (2009) Drug development from marine natural products. Nat Rev Drug Discov 8(1):69e85CrossRefGoogle Scholar
  51. Murugan K, Roni M, Panneerselvam C, Aziz AT, Suresh U, Rajaganesh R, Aruliah R, Mahyoub JA, Trivedi S, Rehman H, Al-Aoh HAN, Kumar S, Higuchi A, Vaseeharan B, Wei H, Senthil-Nathan S, Canale A, Benelli G (2017) Sargassum wightii-synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi and cotton bollworm Helicoverpa armigera. Phys Mol Plant Pathol 101(2018):202–213CrossRefGoogle Scholar
  52. Nagarajan S, Arumugam Kuppusamy K (2013) Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. J Nanobiotechnol 11:39CrossRefGoogle Scholar
  53. Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interf Sci 169(2):59–79CrossRefGoogle Scholar
  54. Nava OJ, Luque PA, Gomez-Gutierrez CM, Vilchis-Nestor AR, Castro-Beltran A, Mota-Gonzalez ML, Olivas A (2017) Influence of Camellia sinensis extract on zinc oxide nanoparticle green synthesis. J Mol Struct 1134:121e125CrossRefGoogle Scholar
  55. Nethravathi PC, Shruthi GS, Suresh D, Udayabhanu, Nagabhushana H, Sharma SC (2015) Garcinia xanthochymus mediated green synthesis of ZnO nanoparticles: photoluminescence, photocatalytic and antioxidant activity studies. Ceram Int 41:8680–8687CrossRefGoogle Scholar
  56. O’Regan B, Schwartz DT (2000) Electrodeposited nanocomposite n–p heterojunctions for solid-state dye-sensitized photovoltaics. Adv Mater 12:1263CrossRefGoogle Scholar
  57. Pandimurugan R, Thambidurai S (2016) Novel seaweed capped ZnO nanoparticles for effective dye photodegradation and antibacterial activity. Adv Powder Technol 27:1062–1072CrossRefGoogle Scholar
  58. Pandimurugan R, Thambidurai S (2017) UV protection and antibacterial properties of seaweed capped ZnO nanoparticles coated cotton fabrics. Int J Biol Macromol 105:788–795PubMedCrossRefGoogle Scholar
  59. Parashar UK, Saxena PS, Srivastava A (2009a) Bioinspired synthesis of silver nanoparticles. Dig J Nanomater Biostruct 4(1):159–166Google Scholar
  60. Parashar V, Parashar R, Sharma B, Pandey AC (2009b) Partenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Dig J Nanomater Biostruct 4(1):45–50Google Scholar
  61. Patra JK, Baek K-H (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014, Article ID 417305, 12 pagesGoogle Scholar
  62. Pavan Kumar MA, Suresh D, Nagabhushana H, Sharma SC (2015) Beta vulgaris aided green synthesis. of ZnO nanoparticles and their luminescence, photo-. catalytic and antioxidant properties. Eur Phys J Plus 130:109–116CrossRefGoogle Scholar
  63. Pavithra NS, Lingaraju K, Raghu GK, Nagaraju G (2017) Citrus maxima (Pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: Applicationsto photocatalytic, electrochemical sensor and antibacterial activities. Mol Biomol Spectrosc 185:11–19CrossRefGoogle Scholar
  64. Raja Naika H, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D, Nagabhushana H (2015) Green synthesis of CuO nanoparticles using Gloriosa. superba L. extract and their antibacterial activity. J Taibah Univ Sci 9:7–12CrossRefGoogle Scholar
  65. Rajabia HR, Naghiha R, Kheirizadeh M, Sadatfaraji H, Mirzaei A, Alvand ZM (2017) Microwave assisted extraction as an efficient approach for biosynthesis of zinc oxide nanoparticles: synthesis, characterization, and biological properties. Mater Sci Eng C 78:1109–1118CrossRefGoogle Scholar
  66. Rajiv P, Rajeshwari S, Venckatesh R (2013) Spectrochimica Acta Part A: bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Mol Biomol Spectrosc 112:384–387CrossRefGoogle Scholar
  67. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57CrossRefGoogle Scholar
  68. Ramesha M, Anbuvannan M, Viruthagiri G (2015) Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Mol Biomol Spectrosc 136 (864–870CrossRefGoogle Scholar
  69. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498PubMedPubMedCentralCrossRefGoogle Scholar
  70. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562PubMedCrossRefPubMedCentralGoogle Scholar
  71. Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J 925494:8Google Scholar
  72. Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, Reidl J, Schild S (2015) Antibacterial activity of silver and zinc nanoparticles against Vibrio cholera and enterotoxic Escherichia coli. Int J Med Microbiol 305:85–95PubMedPubMedCentralCrossRefGoogle Scholar
  73. Santhoshkumar J, Kumar SV, Rajeshkumar S (2017) Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Res Effic Technol 3:459–465Google Scholar
  74. Saravanan M, Gopinath V, Chaurasia MK, Syed A, Ameen F, Purushothaman N (2018) Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb Pathog 115:57–63PubMedCrossRefPubMedCentralGoogle Scholar
  75. Shamaila S, Sajjad AKL, Ryma N-u-A, Farooqi SA, Jabeen N, Majeed S, Farooq I (2016) Review advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl Mater Today 5:150–199CrossRefGoogle Scholar
  76. Shamsuzzaman AM, Khanam H, Aljawfi RN (2017) Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arab J Chem 10:S1530–S1536CrossRefGoogle Scholar
  77. Siripireddy B, Mandal BK (2017) Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Adv Powder Technol 28:785–797CrossRefGoogle Scholar
  78. Sonia S, Linda Jeeva Kumari H, Ruckmani K, Sivakumar M (2017) Antimicrobial and antioxidant potentials of biosynthesized colloidal zinc oxide nanoparticles for a fortified cold cream formulation: a potent nanocosmeceutical application. Mater Sci Eng C 79:581–589CrossRefGoogle Scholar
  79. Suganya P, Vaseeharan B, Vijayakumar S, Balan B, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Biopolymer zein-coated gold nanoparticles: synthesis, antibacterial potential, toxicity and histopathological effects against the Zika virus vector Aedes aegypti. J Photochem Photobiol B 173:404–411PubMedCrossRefPubMedCentralGoogle Scholar
  80. Sundrarajan M, Ambika S, Bharathi K (2015) Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol 26:1294–1299CrossRefGoogle Scholar
  81. Suresh D, Nethravathi PC, Udayabhanu MAPK, Raja Naika H, Nagabhushana H, Sharma SC (2015a) Chironji mediated facile green synthesis of ZnO nanoparticles and their photoluminescence, photodegradative, antimicrobial and antioxidant activities. Mater Sci Semicond Process 40:759–765760CrossRefGoogle Scholar
  82. Suresh D, Udayabhanu PCN, Lingaraju K, Rajanaika H, Sharma SC, Nagabhushana H (2015b) EGCG assisted green synthesis of ZnO nanopowders: Photodegradative, antimicrobial and antioxidant activities. Spectrochim Acta A 136:1467–1474CrossRefGoogle Scholar
  83. Suresh D, Shobharani RM, Nethravathi PC, Pavan Kumar MA, Nagabhushana H, Sharma SC (2015c) Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: luminescence, photocatalytic and antioxidant properties. Spectrochim Acta A 141:128–134CrossRefGoogle Scholar
  84. Suresh D, Nethravathi PC, Udayabhanu, Rajanaika H, Nagabhushana H, Sharma SC (2015d) Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater Sci Semicond Process 31:446–454CrossRefGoogle Scholar
  85. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257e262Google Scholar
  86. Thaya R, Malaikozhundan B, Vijayakumar S, Sivakamavalli J, Jeyasekar R, Shanthi S, Vaseeharan B, Ramasamy P, Sonawane A (2016) Chitosan coated Ag/ZnO nanocomposite and their antibiofilm, antifungal and cytotoxic effects on murine macrophages. Microb Pathog 100:124–132PubMedCrossRefPubMedCentralGoogle Scholar
  87. Tiwari DK, Behari J, Sen P (2008) Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by top down approach. Curr Sci 95(5):647–655Google Scholar
  88. Turton R, Berry DA, Gardner TH, Miltz A (2004) Polymer nanocomposite for electro-optics: perspectives on processing technologies. Indian Eng Chem Res 43:1235CrossRefGoogle Scholar
  89. Udayabhanu PC, Nethravathi MA, Pavan Kumar D, Suresh K, Lingaraju H, Rajanaika H, Nagabhushana SCS (2015) Green synthesis of copper oxide (CuO) nanoparticles using banana peel extract and their photocatalytic activities. Mater Sci Semicond Process 33:81–88CrossRefGoogle Scholar
  90. Venkatachalam P, Priyank N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geeth N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118e127Google Scholar
  91. Vijayakumar S, Vaseeharan B, Malaikozhundan B, Shobiya M (2016a) Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: characterization and biomedical applications. Biomed Pharmacother 84:1213–1222PubMedCrossRefGoogle Scholar
  92. Vijayakumar S, Malaikozhundan B, Gobi N, Vaseeharan B, Murthy C (2016b) Protective effects of chitosan against the hazardous effects of zinc oxide nanoparticle in freshwater crustaceans Ceriodaphnia cornuta and Moina micrura. Limnologica 61:44–51CrossRefGoogle Scholar
  93. Vijayakumar S, Malaikozhundan B, Ramasamy P, Vaseeharan B (2016c) Assessment of biopolymer stabilized silver nanoparticle for their ecotoxicity on Ceriodaphnia cornuta and antibiofilm activity. J Environ Chem Eng 4:2076–2083CrossRefGoogle Scholar
  94. Vijayakumara S, Krishnakumar C, Arulmozhi P, Mahadevan S, Parameswari N (2018) Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC. Microb Pathog 116:44–48CrossRefGoogle Scholar
  95. Vijayaraghavan K, Ashokkumar T (2017) Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng 5:4866–4883CrossRefGoogle Scholar
  96. Wang ZS, Huang CH, Huang YY, Hou YJ, Xie PH, Zhang BW, Cheng HM (2001) Synthesis and physicochemical characterization of ZnOPorphyrin based hybrid materials for potential photovoltaic applications. Chem Mater 13:678CrossRefGoogle Scholar
  97. Wang X, Ding Y, Summers CJ, Wang ZL (2004) Large scale synthesis of six-nanometer-wide ZnO nanobelts. J Phys Chem B 108(26):8773–8777CrossRefGoogle Scholar
  98. Yan X, Shumin W, Lib X, Meng H, Zhanga X, Wang Z, Han Y (2017) Ag nanoparticle-functionalized ZnO micro-flowers for enhanced photodegradation of herbicide derivatives. Chem Phys Lett 679:119–126CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • S. Rajeshkumar
    • 1
  • D. Sandhiya
    • 1
  1. 1.Nanobiomedicine Lab, Department of Pharmacology, Saveetha Dental CollegeSaveetha Institute of Medical and Technical Sciences (SIMATS)ChennaiIndia

Personalised recommendations