Nanomedicine for Hepatic Fibrosis

  • Ezhilarasan Devaraj
  • S. Rajeshkumar


Hepatic fibrosis is a wound-healing response and commonly proceeded by chronic liver injury. Phenotypic activation of hepatic stellate cells (HSCs) plays a significant role in the progression of hepatic fibrosis; thus, they are the target cells of antifibrotic therapy. Many drugs show promising antifibrotic effects in vitro and in vivo studies, and they often exhibit a poor effect in clinical translation due to an insufficient amount of drug accumulation around the target cells (HSCs, hepatocytes, Kupffer cells, etc.) responsible for hepatic fibrosis. Nanomedicines used as theranostic agents can provide novel therapeutic opportunities to deliver antifibrotic compounds with poor water solubility and bioavailability. In recent years, nanoparticle-based antifibrotic therapy has emerged as one of the strategies to suppress the HSC activation and to resolve hepatic fibrosis. The inorganic and organic nanoparticles laden with poorly soluble herbal and synthetic drugs, siRNA with the decoration of HSC-specific molecules, i.e., retinol or receptors, have been studied as the therapeutic strategies to deliver the drugs precisely into HSCs. This review highlights various nano-based HSC targets used in the treatment of liver fibrosis.


Extracellular matrix Hepatic fibrosis Hepatic stellate cells Nanomedicine Nanoparticles 


  1. Adhikari A, Polley N, Darbar S, Bagchi D, Pal SK (2016) Citrate functionalized Mn3O4 in nanotherapy of hepatic fibrosis by oral administration. Future Sci OA 2(4):FSO146PubMedPubMedCentralCrossRefGoogle Scholar
  2. Almeida JP, Chen AL, Foster A, Drezek R (2011) In vivo biodistribution of nanoparticles. Nanomedicine (Lond) 6(5):815–835PubMedCrossRefGoogle Scholar
  3. Bashandy SAE, Alaamer A, Moussa SAA, Omara EA (2018) Role of zinc oxide nanoparticles in alleviating hepatic fibrosis and nephrotoxicity induced by thioacetamide in rats. Can J Physiol Pharmacol 96(4):337–344PubMedCrossRefGoogle Scholar
  4. Bisht S, Khan MA, Bekhit M et al (2011) A polymeric nanoparticle formulation of curcumin (NanoCurc) ameliorates CCl4-induced hepatic injury and fibrosis through reduction of pro-inflammatory cytokines and stellate cell activation. Lab Investig 91(9):1383–1395PubMedCrossRefGoogle Scholar
  5. Cella D, Peterman A, Hudgens S, Webster K, Socinski MA (2003) Measuring the side effects of taxane therapy in oncology: the functional assesment of cancer therapy-taxane (FACT-taxane). Cancer 98(4):822–831PubMedCrossRefGoogle Scholar
  6. Cengiz M, Kutlu HM, Burukoglu DD, Ayhancı A (2015) A comparative study on the therapeutic effects of silymarin and silymarin-loaded solid lipid nanoparticles on D-GaIN/TNF-α-induced liver damage in Balb/c mice. Food Chem Toxicol 77:93–100PubMedCrossRefGoogle Scholar
  7. Chang CC, Yang Y, Gao DY et al (2018) Docetaxel-carboxymethylcellulose nanoparticles ameliorate CCl4-induced hepatic fibrosis in mice. J Drug Target 26(5–6):516–524PubMedCrossRefGoogle Scholar
  8. Chen YN, Hsu SL, Liao MY et al (2016) Ameliorative effect of curcumin-encapsulated hyaluronic acid-PLA nanoparticles on thioacetamide-induced murine hepatic fibrosis. Int J Environ Res Public Health 14(1):11. pii: E11PubMedCentralCrossRefPubMedGoogle Scholar
  9. Chen Y, Liu YC, Sung YC et al (2017) Overcoming sorafenib evasion in hepatocellular carcinoma using CXCR4-targeted nanoparticles to co-deliver MEK-inhibitors. Sci Rep 7:44123PubMedPubMedCentralCrossRefGoogle Scholar
  10. D’Souza AA, Devarajan PV (2015) Asialoglycoprotein receptor mediated hepatocyte targeting – strategies and applications. J Control Release 203:126–139PubMedCrossRefGoogle Scholar
  11. Das A, Mukherjee P, Singla SK et al (2010) Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide. Nanotechnology 21(30):305102PubMedPubMedCentralCrossRefGoogle Scholar
  12. de Carvalho TG, Garcia VB, de Araújo AA et al (2018) Spherical neutral gold nanoparticles improve anti-inflammatory response, oxidative stress and fibrosis in alcohol-methamphetamine-induced liver injury in rats. Int J Pharm 548(1):1–14PubMedCrossRefGoogle Scholar
  13. deLeeuw AM, McCarthy SP, Geerts A, Knook DL (1984) Purified rat liver fat-storing cells in culture divide and contain collagen. Hepatology 4:392–403CrossRefGoogle Scholar
  14. Duncan JS, Whittle MC, Nakamura K et al (2012) Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149(2):307–321PubMedPubMedCentralCrossRefGoogle Scholar
  15. Duong HT, Dong Z, Su L et al (2015) The use of nanoparticles to deliver nitric oxide to hepatic stellate cells for treating liver fibrosis and portal hypertension. Small 11(19):2291–2304PubMedCrossRefGoogle Scholar
  16. Eguchi A, Yoshitomi T, Lazic M et al (2015) Redox nanoparticles as a novel treatment approach for inflammation and fibrosis associated with nonalcoholic steatohepatitis. Nanomedicine (Lond) 10(17):2697–2708CrossRefGoogle Scholar
  17. Ezhilarasan D (2018) Oxidative stress is bane in chronic liver diseases: clinical and experimental perspective. Arab J Gastroenterol 19(2):56–64PubMedCrossRefGoogle Scholar
  18. Ezhilarasan D, Karthikeyan S (2016) Silibinin alleviates N-nitrosodimethylamine-induced glutathione dysregulation and hepatotoxicity in rats. Chin J Nat Med 14(1):40–47PubMedGoogle Scholar
  19. Ezhilarasan D, Karthikeyan S, Vivekanandan P (2012) Ameliorative effect of silibinin against N-nitrosodimethylamine-induced hepatic fibrosis in rats. Environ Toxicol Pharmacol 34(3):1004–1013PubMedCrossRefGoogle Scholar
  20. Ezhilarasan D, Sokal E, Karthikeyan S, Najimi M (2014) Plant derived antioxidants and antifibrotic drugs: past, present and future. J Coast Life Med 2(9):738–745CrossRefGoogle Scholar
  21. Ezhilarasan D, Evraerts J, Brice S et al (2016) Silibinin inhibits proliferation and migration of human hepatic stellate LX-2 cells. Clin Exp Hepatol 6(3):167–174CrossRefGoogle Scholar
  22. Ezhilarasan D, Evraerts J, Sid B et al (2017) Silibinin induces hepatic stellate cell cycle arrest via enhancing p53/p27 and inhibiting Akt downstream signaling protein expression. Hepatobiliary Pancreat Dis Int 16(1):80–87PubMedCrossRefGoogle Scholar
  23. Ezhilarasan D, Sokal E, Najimi M (2018) Hepatic fibrosis: it is time to go with hepatic stellate cell-specific therapeutic targets. Hepatobiliary Pancreat Dis Int 17:192–197PubMedCrossRefGoogle Scholar
  24. Friedman SL (1990) Cellular sources of collagen and regulation of collagen production in liver. Semin Liver Dis 10(1):20–29PubMedCrossRefGoogle Scholar
  25. Friedman SL (2008) Hepatic fibrosis – overview. Toxicology 254(3):120–129PubMedCrossRefGoogle Scholar
  26. Friedman SL (2015) Hepatic fibrosis: emerging therapies. Dig Dis 33(4):504–507PubMedCrossRefGoogle Scholar
  27. Friedman SL, Bissell DM (1990) Hepatic fibrosis: new insights into pathogenesis. Hosp Pract (Off Ed) 25(5):43–50CrossRefGoogle Scholar
  28. Friedman SL, Roll FJ, Boyles J, Bissell DM (1985) Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A 82:8681–8685PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gao DY, Han LM, Zhang LH, Fang XL, Wang JX (2009) Bioavailability of salvianolic acid B and effect on blood viscosities after oral administration of salvianolic acids in beagle dogs. Arch Pharm Res 32(5):773–779PubMedCrossRefGoogle Scholar
  30. Giannitrapani L, Soresi M, Bondì ML, Montalto G, Cervello M (2014) Nanotechnology applications for the therapy of liver fibrosis. World J Gastroenterol 20(23):7242–7251PubMedPubMedCentralCrossRefGoogle Scholar
  31. Harrison SA, Abdelmalek MF, Caldwell S et al (2018) Simtuzumab is ineffective for patients with bridging fibrosis or compensated cirrhosis caused by nonalcoholic steatohepatitis. Gastroenterology 155:1140–1153. S0016-5085(18):34758-9PubMedCrossRefGoogle Scholar
  32. He Q, Zhang J, Chen F et al (2010) An anti-ROS/hepatic fibrosis drug delivery system based on salvianolic acid B loaded mesoporous silica nanoparticles. Biomaterials 31(30):7785–7796PubMedCrossRefGoogle Scholar
  33. Hemmann S, Graf J, Roderfeld M, Roeb E (2007) Expression of MMPs and TIMPs in liver fibrosis – a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol 46(5):955–975PubMedCrossRefGoogle Scholar
  34. Higashi T, Friedman SL, Hoshida Y (2017) Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 121:27–42PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hou J, Tian J, Jiang W, Gao Y, Fu F (2011) Therapeutic effects of SMND-309, a new metabolite of salvianolic acid B, on experimental liver fibrosis. Eur J Pharmacol 650(1):390–395PubMedCrossRefGoogle Scholar
  36. Hsu WH, Lee BH, Hsu YW, Pan TM (2013) Peroxisome proliferator-activated receptor-γ activators monascin and rosiglitazone attenuate carboxymethyllysine-induced fibrosis in hepatic stellate cells through regulating the oxidative stress pathway but independent of the receptor for advanced glycation end products signaling. J Agric Food Chem 61(28):6873–6879PubMedCrossRefGoogle Scholar
  37. Huang L, Xie J, Bi Q et al (2017) Highly selective targeting of hepatic stellate cells for liver fibrosis treatment using a d-Enantiomeric peptide ligand of Fn14 identified by Mirror-image mRNA display. Mol Pharm 14(5):1742–1753PubMedCrossRefPubMedCentralGoogle Scholar
  38. Hussein J, El-Banna M, Mahmoud KF et al (2017) The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis. Biomed Pharmacother 90:880–887PubMedCrossRefGoogle Scholar
  39. Ikenaga N, Peng ZW, Vaid KA et al (2017) Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut 66(9):1697–1708PubMedPubMedCentralCrossRefGoogle Scholar
  40. Iwakiri Y (2015) Nitric oxide in liver fibrosis: the role of inducible nitric oxide synthase. Clin Mol Hepatol 21(4):319–325PubMedPubMedCentralCrossRefGoogle Scholar
  41. Jamwal R (2018) Bioavailable curcumin formulations: a review of pharmacokinetic studies in healthy volunteers. J Integr Med 16(6):367–374. pii: S2095-4964(18)30077-3PubMedCrossRefGoogle Scholar
  42. Jia Z, Gong Y, Pi Y et al (2018) pPB peptide-mediated siRNA-loaded stable nucleic acid lipid nanoparticles on targeting therapy of hepatic fibrosis. Mol Pharm 15(1):53–62PubMedCrossRefGoogle Scholar
  43. Jiang H, Xia LZ, Li Y, Li X, Wu J (2013) Effect of Panax notoginseng saponins on expressions of MMP-13 and TIMP-1 in rats with hepatic fibrosis. Zhongguo Zhong Yao ZaZhi 38(8):1206–1210Google Scholar
  44. Jiménez Calvente C, Sehgal A et al (2015) Specific hepatic delivery of procollagen α1(I) small interfering RNA in lipid-like nanoparticles resolves liver fibrosis. Hepatology 62(4):1285–1297PubMedCrossRefGoogle Scholar
  45. Kaps L, Nuhn L, Aslam M et al (2015) In vivo gene-silencing in fibrotic liver by siRNA-loaded cationic nanohydrogel particles. Adv Healthc Mater 4(18):2809–2815PubMedCrossRefGoogle Scholar
  46. Khaja F, Jayawardena D, Kuzmis A, Önyüksel H (2016) Targeted sterically stabilized phospholipid siRNANanomedicine for hepatic and renal fibrosis. Nanomaterials (Basel) 6(1):pii: E8CrossRefGoogle Scholar
  47. Kieslichova E, Frankova S, Protus M et al (2018) Acute liver failure due to Amanita phalloides poisoning: therapeutic approach and outcome. Transplant Proc 50(1):192–197PubMedCrossRefGoogle Scholar
  48. Kikuchi S, Griffin CT, Wang SS, Bissell DM (2005) Role of CD44 in epithelial wound repair: migration of rat hepatic stellate cells utilizes hyaluronic acid and CD44v6. J Biol Chem 280(15):15398–15404PubMedCrossRefGoogle Scholar
  49. Kisseleva T, Cong M, Paik Y et al (2012) Myofibroblast revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A 109(24):9448–9453PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kong WH, Park K, Lee MY et al (2013) Cationic solid lipid nanoparticles derived from apolipoprotein-free LDLs for target specific systemic treatment of liver fibrosis. Biomaterials 34(2):542–551PubMedCrossRefGoogle Scholar
  51. Kumar N, Rai A, Reddy ND et al (2014a) Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells. Pharmacol Rep 66(5):788–798PubMedCrossRefGoogle Scholar
  52. Kumar V, Mundra V, Mahato RI (2014b) Nanomedicines of hedgehog inhibitor and PPAR-γ agonist for treating liver fibrosis. Pharm Res 31(5):1158–1169PubMedCrossRefGoogle Scholar
  53. Lee YA, Wallace MC, Friedman SL (2015) Pathobiology of liver fibrosis: a translational success story. Gut 64(5):830–841PubMedPubMedCentralCrossRefGoogle Scholar
  54. Li Y, Mu M, Yuan L, Zeng B, Lin S (2018) Challenges in the early diagnosis of patients with acute liver failure induced by amatoxin poisoning: two case reports. Medicine (Baltimore) 97(27):e11288CrossRefGoogle Scholar
  55. Lin TT, Gao DY, Liu YC et al (2016) Development and characterization of sorafenib-loaded PLGA nanoparticles for the systemic treatment of liver fibrosis. J Control Release 221:62–70PubMedCrossRefGoogle Scholar
  56. Liu CH, Chan KM, Chiang T et al (2016) Dual-functional nanoparticles targeting CXCR4 and delivering AntiangiogenicsiRNA ameliorate liver fibrosis. Mol Pharm 13:2253–2262PubMedCrossRefGoogle Scholar
  57. Mehal WZ, Schuppan D (2015) Antifibrotic therapies in the liver. Semin Liver Dis 35(2):184–198PubMedPubMedCentralCrossRefGoogle Scholar
  58. Meng Z, Meng L, Wang K et al (2015) Enhanced hepatic targeting, biodistribution and antifibrotic efficacy of tanshinone IIA loaded globin nanoparticles. Eur J Pharm Sci 73:35–43PubMedCrossRefGoogle Scholar
  59. Muñoz-Luque J, Ros J, Fernández-Varo G et al (2008) Regression of fibrosis after chronic stimulation of cannabinoid CB2 receptor in cirrhotic rats. J Pharmacol Exp Ther 324(2):475–483PubMedCrossRefGoogle Scholar
  60. Mussi SV, Torchilin VP (2013) Recent trends in the use of lipidic nanoparticles as pharmaceutical carriers for cancer therapy and diagnostics. J Mater Chem B 1(39):5201CrossRefGoogle Scholar
  61. Nakamura I, Zakharia K, Banini BA et al (2014) Brivanib attenuates hepatic fibrosis in vivo and stellate cell activation in vitro by inhibition of FGF, VEGF and PDGF signaling. PLoS One 9(4):e92273PubMedPubMedCentralCrossRefGoogle Scholar
  62. Oró D, Yudina T, Fernández-Varo G et al (2016) Cerium oxide nanoparticles reduce steatosis, portal hypertension and display antiinflammatory properties in rats with liver fibrosis. J Hepatol 64(3):691–698PubMedCrossRefPubMedCentralGoogle Scholar
  63. Pan TL, Wang PW, Hung CF et al (2016) The impact of retinol loading and surface charge on the hepatic delivery of lipid nanoparticles. Colloids Surf B Biointerfaces 141:584–594PubMedCrossRefGoogle Scholar
  64. Pinter M, Sieghart W, Reiberger T et al (2012) The effects of sorafenib on the portal hypertensive syndrome in patients with liver cirrhosis and hepatocellular carcinoma – a pilot study. Aliment Pharmacol Ther 35:83–91PubMedCrossRefGoogle Scholar
  65. Puche JE, Saiman Y, Friedman SL (2013) Hepatic stellate cells and liver fibrosis. Compr Physiol 3(4):1473–1492PubMedCrossRefGoogle Scholar
  66. Qiang G, Yang X, Xuan Q et al (2014) Salvianolic acid a prevents the pathological progression of hepatic fibrosis in high-fat diet-fed and streptozotocin-induced diabetic rats. Am J Chin Med 42(5):1183–1198PubMedCrossRefGoogle Scholar
  67. Ramachandran P, Pellicoro A, Vernon MA et al (2012) Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A 109(46):E3186–E3195PubMedPubMedCentralCrossRefGoogle Scholar
  68. Safer AM, Hanafy NA, Bharali DJ, Cui H, Mousa SA (2015a) Effect of green tea extract encapsulated into chitosan nanoparticles on hepatic fibrosis collagen fibers assessed by atomic force microscopy in rat hepatic fibrosis model. J Nanosci Nanotechnol 15(9):6452–6459PubMedCrossRefGoogle Scholar
  69. Safer AM, Sen A, Hanafy NA, Mousa SA (2015b) Quantification of the healing effect in hepatic fibrosis induced by chitosan nano-encapsulated green tea in rat model. J Nanosci Nanotechnol 15(12):9918–9924PubMedCrossRefGoogle Scholar
  70. Schiborr C, Kocher A, Behnam D et al (2014) The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res 58(3):516–527PubMedCrossRefGoogle Scholar
  71. Schuppan D (1990) Structure of the extracellular matrix in normal and fibrotic liver: collagens and glycoproteins. Semin Liver Dis 10(1):1–10PubMedCrossRefGoogle Scholar
  72. Schuppan D, Ashfaq-Khan M, Yang AT, Kim YO (2018) Liver fibrosis: direct antifibrotic agents and targeted therapies. Matrix Biol 68–69:435–451PubMedCrossRefGoogle Scholar
  73. Shangguan M, Lu Y, Qi J et al (2014) Binary lipids-based nanostructured lipid carriers for improved oral bioavailability of silymarin. J Biomater Appl 28(6):887–896PubMedCrossRefGoogle Scholar
  74. Sudha PN, Rose MH (2014) Beneficial effects of hyaluronic acid. Adv Food Nutr Res 72:137–176PubMedCrossRefGoogle Scholar
  75. Sung YC, Liu YC, Chao PH et al (2018) Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development. Theranostics 8(4):894–905PubMedPubMedCentralCrossRefGoogle Scholar
  76. Thomas RG, Moon MJ, Kim JH, Lee JH, Jeong YY (2015) Effectiveness of losartan-loaded Hyaluronic Acid (HA) micelles for the reduction of advanced hepatic fibrosis in C3H/HeN mice model. PLoS One 10(12):e0145512PubMedPubMedCentralCrossRefGoogle Scholar
  77. Thomson J, Hargrove L, Kennedy L, Demieville J, Francis H (2017) Cellular crosstalk during cholestatic liver injury. Liver Res 1(1):26–33PubMedPubMedCentralCrossRefGoogle Scholar
  78. Toriyabe N, Sakurai Y, Kato A et al (2017) The delivery of small interfering RNA to hepatic stellate cells using a lipid nanoparticle composed of a vitamin A-scaffold lipid-like material. J Pharm Sci 106(8):2046–2052PubMedCrossRefGoogle Scholar
  79. Tsai MK, Lin YL, Huang YT (2010) Effects of salvianolic acids on oxidative stress and hepatic fibrosis in rats. Toxicol Appl Pharmacol 242(2):155–164PubMedCrossRefGoogle Scholar
  80. Tsuchida T, Friedman SL (2017) Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14(7):397–411PubMedCrossRefGoogle Scholar
  81. Wallace MC, Friedman SL, Mann DA (2015) Emerging and disease-specific mechanisms of hepatic stellate cell activation. Semin Liver Dis 35(2):107–118PubMedCrossRefGoogle Scholar
  82. Wang Y, Gao J, Zhang D et al (2010) New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. J Hepatol 53:132–144PubMedCrossRefGoogle Scholar
  83. Wang C, Song X, Li Y et al (2013) Low-dose paclitaxel ameliorates pulmonary fibrosis by suppressing TGF-β1/Smad3 pathway via miR-140 upregulation. PLoS One 8(8):e70725PubMedPubMedCentralCrossRefGoogle Scholar
  84. Wang J, Pan W, Wang Y et al (2018) Enhanced efficacy of curcumin with phosphatidylserine-decorated nanoparticles in the treatment of hepatic fibrosis. Drug Deliv 25(1):1–11PubMedCrossRefGoogle Scholar
  85. Wilhelm A, Shepherd EL, Amatucci A et al (2016) Interaction of TWEAK with Fn14 leads to the progression of fibrotic liver disease by directly modulating hepatic stellate cell proliferation. J Pathol 239(1):109–121PubMedPubMedCentralCrossRefGoogle Scholar
  86. Yang JJ, Tao H, Li J (2014) Hedgehog signaling pathway as key player in liver fibrosis: new insights and perspectives. Expert Opin Ther Targets 18(9):1011–1021PubMedCrossRefGoogle Scholar
  87. Yoon YJ, Friedman SL, Lee YA (2016) Antifibrotic therapies: where are we now? Semin Liver Dis 36(1):87–98PubMedCrossRefGoogle Scholar
  88. Younis N, Shaheen MA, Abdallah MH (2016) Silymarin-loaded Eudragit(®) RS100 nanoparticles improved the ability of silymarin to resolve hepatic fibrosis in bile duct ligated rats. Biomed Pharmacother 81:93–103PubMedCrossRefGoogle Scholar
  89. Yu Y, Duan J, Li Y et al (2017) Silica nanoparticles induce liver fibrosis via TGF-β1/Smad3 pathway in ICR mice. Int J Nanomedicine 12:6045–6057PubMedPubMedCentralCrossRefGoogle Scholar
  90. Zhang Z, Wang C, Zha Y et al (2015) Corona-directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy. ACS Nano 9(3):2405–2419PubMedCrossRefGoogle Scholar
  91. Zhao Y, Dang Z, Xu S, Chong S (2017) Heat shock protein 47 effects on hepatic stellate cell-associated receptors in hepatic fibrosis of Schistosomajaponicum-infected mice. Biol Chem 398(12):1357–1366PubMedCrossRefGoogle Scholar
  92. Zhou J, Zhong DW, Wang QW, Miao XY, Xu XD (2010) Paclitaxel ameliorates fibrosis in hepatic stellate cells via inhibition of TGF-beta/Smad activity. World J Gastroenterol 16(26):3330–3334PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Ezhilarasan Devaraj
    • 1
    • 2
  • S. Rajeshkumar
    • 1
  1. 1.Department of Pharmacology, Saveetha Dental College (SDC)Saveetha Institute of Medical and Technical Sciences (SIMATS)ChennaiIndia
  2. 2.Biomedical Research Unit and Laboratory Animal Centre, SDCSIMATSChennaiIndia

Personalised recommendations