Advertisement

Data Security Techniques Based on DNA Encryption

  • Mousomi Roy
  • Shouvik Chakraborty
  • Kalyani Mali
  • Raja Swarnakar
  • Kushankur Ghosh
  • Arghasree Banerjee
  • Sankhadeep ChatterjeeEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1065)

Abstract

Security of the digital data is one of the major concerns of the today’s world. There are several methods for digital data security that can be found in the literature. Biological sequences have some features that make it worthy for the digital data security processes. In this work, DNA encryption and its different approaches are discussed to give a brief overview on the data security methods based on DNA encryption. This work can be highly beneficial for future research on DNA encryption and can be applied on different domains.

Keywords

Digital data security DNA encryption Cryptography 

References

  1. 1.
    Sarddar, D., Chakraborty, S., Roy, M.: An efficient approach to calculate dynamic time quantum in round Robin algorithm for efficient load balancing. Int. J. Comput. Appl. 123(14), 48–52 (2015)Google Scholar
  2. 2.
    Mali, K., Chakraborty, S., Roy, M.: A study on statistical analysis and security evaluation parameters in image encryption. IJSRD Int. J. Sci. Res. Dev. 3, 2321–2613 (2015)Google Scholar
  3. 3.
    Cui, G., Qin, L., Wang, Y., Zhang, X.: Information security technology based on DNA computing. In: 2007 International Workshop on Anti-Counterfeiting, Security and Identification (ASID), pp. 288–291 (2007)Google Scholar
  4. 4.
    Seal, A., Chakraborty, S., Mali, K.: A new and resilient image encryption technique based on pixel manipulation, value transformation and visual transformation utilizing single–level haar wavelet transform, vol. 458 (2017)Google Scholar
  5. 5.
    Mali, K., Chakraborty, S., Seal, A., Roy, M.: An efficient image cryptographic algorithm based on frequency domain using Haar wavelet transform. Int. J. Secur. Appl. 9(12), 279–288 (2015)Google Scholar
  6. 6.
    Hore, S., Chatterjee, S., Chakraborty, S., Shaw, R.K.: Analysis of different feature description algorithm in object recognition (2016)Google Scholar
  7. 7.
    Chakraborty, S., Chatterjee, S., Ashour, A.S., Mali, K., Dey, N.: Intelligent computing in medical imaging: a study. In: Dey, N. (ed.) Advancements in applied metaheuristic computing IGI global, pp. 143–163 (2017)CrossRefGoogle Scholar
  8. 8.
    Chakraborty, S., Roy, M., Hore, S.: A study on different edge detection techniques in digital image processing. In: Feature Detectors and Motion Detection in Video Processing. IGI Global, pp. 100–122 (2016)Google Scholar
  9. 9.
    Roy, M., Mali, K., Chatterjee, S., Chakraborty, S., Debnath, R., Sen, S.: A study on the applications of the biomedical image encryption methods for secured computer aided diagnostics. In: 2019 Amity International Conference on Artificial Intelligence (AICAI), pp. 881–886 (2019)Google Scholar
  10. 10.
    Basha, D.: Analysis on DNA based cryptography to secure data transmission (2011)Google Scholar
  11. 11.
    Cui, G., Qin, L., Wang, Y., Zhang, X.: An encryption scheme using DNA technology. In: Bio-Inspired Computing: Theories and Applications, pp. 37–42 (2008)Google Scholar
  12. 12.
    Tanaka, K., Okamoto, A., Saito, I.: Public-key system using DNA as a one-way function for key distribution. Biosystems 81(1), 25–29 (2005)CrossRefGoogle Scholar
  13. 13.
    Chakraborty, S., et al.: Modified cuckoo search algorithm in microscopic image segmentation of hippocampus. Microsc. Res. Tech. 80(10), 1051–1072 (2017)CrossRefGoogle Scholar
  14. 14.
    Chakraborty, S., Bhowmik, S.: Blending roulette wheel selection with simulated annealing for job shop scheduling problem. In: Michael Faraday IET International Summit 2015, p. 100(7) (2015)Google Scholar
  15. 15.
    Chakraborty, S., Bhowmik, S.: An efficient approach to job shop scheduling problem using simulated annealing. Int. J. Hybrid Inf. Technol. 8(11), 273–284 (2015)CrossRefGoogle Scholar
  16. 16.
    Chakraborty, S., Bhowmik, S.: Job shop scheduling using simulated annealing. In: First International Conference on Computation and Communication Advancement, vol. 1(1), pp. 69–73 (2013)Google Scholar
  17. 17.
    Chakraborty, S., Seal, A., Roy, M.: An elitist model for obtaining alignment of multiple sequences using genetic algorithm. In: 2nd National Conference NCETAS 2015, vol. 4(9), pp. 61–67 (2015)Google Scholar
  18. 18.
    Roy, M., et al.: Biomedical image enhancement based on modified Cuckoo search and morphology. In: 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON), pp. 230–235 (2017)Google Scholar
  19. 19.
    Chakraborty, S., et al.: Detection of skin disease using metaheuristic supported artificial neural networks. In: 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON), pp. 224–229 (2017)Google Scholar
  20. 20.
    Chakraborty, S., et al.: Image based skin disease detection using hybrid neural network coupled bag-of-features. In: 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2017, vol. 2018 (2018)Google Scholar
  21. 21.
    Chakraborty, S., et al.: Bio-medical image enhancement using hybrid metaheuristic coupled soft computing tools. In: 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2017, vol. 2018 (2018)Google Scholar
  22. 22.
    Chakraborty, S., Mali, K.: Application of multiobjective optimization techniques in biomedical image segmentation—a study. In: Multi-objective optimization. Springer, Singapore, pp. 181–194 (2018)CrossRefGoogle Scholar
  23. 23.
    Chakraborty, S., Raman, A., Sen, S., Mali, K., Chatterjee, S., Hachimi, H.: Contrast optimization using Elitist metaheuristic optimization and gradient approximation for biomedical image enhancement. In: 2019 Amity International Conference on Artificial Intelligence (AICAI), pp. 712–717 (2019)Google Scholar
  24. 24.
    Chakraborty, S., Chatterjee, S., Chatterjee, A., Mali, K., Goswami, S., Sen, S.: Automated breast cancer identification by analyzing histology slides using metaheuristic supported supervised classification coupled with bag-of-features. In: 2018 Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), pp. 81–86 (2018)Google Scholar
  25. 25.
    Hore, S., et al.: An integrated interactive technique for image segmentation using stack based seeded region growing and thresholding. Int. J. Electr. Comput. Eng. 6(6) (2016)CrossRefGoogle Scholar
  26. 26.
    Hore, S., et al.: Finding contours of hippocampus brain cell using microscopic image analysis. J. Adv. Microsc. Res. 10(2), 93–103 (2015)CrossRefGoogle Scholar
  27. 27.
    Chakraborty, S., Chatterjee, S., Dey, N., Ashour, A.S., Shi, F.: Gradient approximation in retinal blood vessel segmentation. In: 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON), pp. 618–623 (2017)Google Scholar
  28. 28.
    Roy, M., et al.: Cellular image processing using morphological analysis. In: 2017 IEEE 8th annual ubiquitous computing, electronics and mobile communication conference (UEMCON), pp. 237–241 (2017)Google Scholar
  29. 29.
    Chakraborty, S., et al.: Dermatological effect of UV rays owing to ozone layer depletion. In: 2017 4th International Conference on Opto-Electronics and Applied Optics (Optronix), pp. 1–6 (2017)Google Scholar
  30. 30.
    Chakraborty, S., et al.: Bag-of-features based classification of dermoscopic images. In: 2017 4th International Conference on Opto-Electronics and Applied Optics. Optronix 2017, vol. 2018 (2018)Google Scholar
  31. 31.
    Chakraborty, S., et al.: An integrated method for automated biomedical image segmentation. In: 2017 4th International Conference on Opto-Electronics and Applied Optics, Optronix 2017, vol. 2018 (2018)Google Scholar
  32. 32.
    DNA vs RNA—Barca.fontanacountryinn.com: [Online]. Available: http://barca.fontanacountryinn.com/dna-vs-rna/. Accessed: 08 Feb 2019
  33. 33.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)CrossRefGoogle Scholar
  34. 34.
    Lipton, R.J.: DNA solution of hard computational problems. Science 268(5210), 542–545 (1995)CrossRefGoogle Scholar
  35. 35.
    Boneh, D., Dunworth, C., Lipton, R.J.: Breaking DES using a molecular computer. In: 1st DIMACS workshop on DNA based computers (1995)Google Scholar
  36. 36.
    Ouyang, Q., Kaplan, P.D., Liu, S., Libchaber, A.: DNA solution of the maximal clique problem. Science 278(5337), 446–449 (1997)CrossRefGoogle Scholar
  37. 37.
    Chen, J.: A DNA-based, biomolecular cryptography design. In: Circuits System (2003)Google Scholar
  38. 38.
    Gehani, A., LaBean, T., Reif, J.: DNA-based cryptography, pp. 167–188. Springer, Berlin (2003)zbMATHGoogle Scholar
  39. 39.
    Amin, S., Saeb, M., El-Gindi, S.: A DNA-based implementation of YAEA encryption algorithm. Comput. Intell. (2006)Google Scholar
  40. 40.
    Verma, A.K., Dave, M., Joshi, R.C.: DNA cryptography: a novel paradigm for secure routing in Mobile Ad hoc Networks (MANETs). J. Discret. Math. Sci. Cryptogr. 11(4), 393–404 (2008)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Khalifa, A., Atito, A.: High-capacity DNA-based steganography. In: 8th International Conference on Informatics (2012)Google Scholar
  42. 42.
    Wang, X., Zhang, Q.: DNA computing-based cryptography. In: 2009 Fourth International on Conference on Bio-Inspired Computing, pp. 1–3 (2009)Google Scholar
  43. 43.
    Roy, B., Majumder, A.: An Improved Concept of Cryptography Based on DNA Sequencing (2012)Google Scholar
  44. 44.
    Kaundal, A.K., Verma, A.K.: DNA Based Cryptography: A Review (2014)Google Scholar
  45. 45.
    Menaka, K.: Message encryption using DNA sequences. In: 2014 World Congress on Computing and Communication Technologies, pp. 182–184 (2014)Google Scholar
  46. 46.
    Ning, K.: A Pseudo DNA Cryptography Method. Mar 2009Google Scholar
  47. 47.
    Lai, X., Lu, M., Qin, L., Han, J., Fang, X.: Asymmetric encryption and signature method with DNA technology. Sci. China Inf. Sci. 53(3), 506–514 (2010)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Torkaman, M.R.N., Kazazi, N.S., Rouddini, A.: Innovative approach to improve hybrid cryptography by using DNA steganography. Int. J. New Comput. Archit. Appl. 2(1), 225–236 (2012)Google Scholar
  49. 49.
    Tornea, O., Borda, M.E.: Security and complexity of a DNA-based cipher. In: 2013 11th RoEduNet International Conference, pp. 1–5 (2013)Google Scholar
  50. 50.
    Chen, J: A DNA-based, biomolecular cryptography design. In: Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS’03, vol. 3, pp. III-822–III-825Google Scholar
  51. 51.
    Cui, G., Qin, L., Wang, Y., Zhang, X.: An encryption scheme using DNA technology. In: 2008 3rd International Conference on Bio-Inspired Computing: Theories and Applications, pp. 37–42 (2008)Google Scholar
  52. 52.
    Pramanik, S., Setua, S.K.: DNA cryptography. In: 2012 7th International Conference on Electrical and Computer Engineering, pp. 551–554 (2012)Google Scholar
  53. 53.
    Amin, S.T., Saeb, M., El-Gindi, S.: A DNA-based implementation of YAEA encryption algorithm. Comput. Intell. (2006)Google Scholar
  54. 54.
    Zhang, Y.: A DNA-based encryption method based on DNA chip and PCR amplification techniques,-9. pdf, works.bepress.comGoogle Scholar
  55. 55.
    Chakraborty, S., Seal, A., Roy, M., Mali, K.: A novel lossless image encryption method using DNA substitution and chaotic logistic map. Int. J. Secur. Appl. 10(2), 205–216 (2016)Google Scholar
  56. 56.
    Suri, S., Vijay, R.: A bi-objective genetic algorithm optimization of Chaos-DNA based hybrid approach. J. Intell. Syst. 28(2), 333–346 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Mousomi Roy
    • 1
  • Shouvik Chakraborty
    • 1
  • Kalyani Mali
    • 1
  • Raja Swarnakar
    • 2
  • Kushankur Ghosh
    • 3
  • Arghasree Banerjee
    • 3
  • Sankhadeep Chatterjee
    • 3
    Email author
  1. 1.Department of Computer Science & EngineeringUniversity of KalyaniKalyani, NadiaIndia
  2. 2.Department of Computer ScienceKalyani MahavidyalayaKalyani, NadiaIndia
  3. 3.Department of Computer Science & EngineeringUniversity of Engineering & ManagementKolkataIndia

Personalised recommendations