Advertisement

Uveitis pp 17-41 | Cite as

Infectious Anterior Uveitis

  • K. Matthew McKay
  • Nicholas J. ButlerEmail author
Chapter
Part of the Current Practices in Ophthalmology book series (CUPROP)

Abstract

Worldwide, anterior uveitis predominates as the most prevalent anatomic subtype of intraocular inflammation, and up to one-third of these cases are attributable to infection. By far, herpetic etiologies outweigh all other causes of infectious anterior uveitis; however, bacterial pathogens, such as syphilis, tuberculosis, and less so, Lyme disease, have an important role. In vivo confocal microscopy and other ancillary, clinic-based tests may have increasing diagnostic potential, but a definitive diagnosis often relies upon aqueous fluid analysis. Treatment depends upon the inciting pathogen. Specific antimicrobial, along with concurrent topical corticosteroid, may mitigate the development of ocular complications, such as cataracts, glaucoma, and corneal pathology. However, disease course and outcomes vary significantly, depending upon the microbe, host immune response, and effectiveness of therapy.

Keywords

Infection Anterior uveitis Herpetic uveitis Herpes simplex Varicella zoster Cytomegalovirus Dengue Chikungunya Rubella HIV Syphilis Tuberculosis Lyme disease 

References

  1. 1.
    Chang JH, Wakefield D. Uveitis: a global perspective. Ocul Immunol Inflamm. 2002;10(4):263–79.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Miserocchi E, et al. Review on the worldwide epidemiology of uveitis. Eur J Ophthalmol. 2013;23(5):705–17.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tsirouki T, et al. A focus on the epidemiology of uveitis. Ocul Immunol Inflamm. 2018;26(1):2–16.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Llorenc V, et al. Epidemiology of uveitis in a Western urban multiethnic population. The challenge of globalization. Acta Ophthalmol. 2015;93(6):561–7.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tan WJ, et al. Trends in patterns of anterior uveitis in a tertiary institution in Singapore. Ocul Immunol Inflamm. 2013;21(4):270–5.CrossRefGoogle Scholar
  6. 6.
    Karaconji T, Maconochie Z, McCluskey P. Acute anterior uveitis in Sydney. Ocul Immunol Inflamm. 2013;21(2):108–14.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jakob E, et al. Uveitis subtypes in a German interdisciplinary uveitis center – analysis of 1916 patients. J Rheumatol. 2009;36(1):127–36.CrossRefGoogle Scholar
  8. 8.
    Khairallah M, et al. Pattern of uveitis in a referral Centre in Tunisia, North Africa. Eye (Lond). 2007;21(1):33–9.CrossRefGoogle Scholar
  9. 9.
    Sengun A, et al. Causes of uveitis in a referral hospital in Ankara, Turkey. Ocul Immunol Inflamm. 2005;13(1):45–50.CrossRefGoogle Scholar
  10. 10.
    Soheilian M, et al. Patterns of uveitis in a tertiary eye care center in Iran. Ocul Immunol Inflamm. 2004;12(4):297–310.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Islam SM, Tabbara KF. Causes of uveitis at the eye Center in Saudi Arabia: a retrospective review. Ophthalmic Epidemiol. 2002;9(4):239–49.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bajwa A, et al. Epidemiology of uveitis in the mid-Atlantic United States. Clin Ophthalmol. 2015;9:889–901.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Quentin CD, Reiber H. Fuchs heterochromic cyclitis: rubella virus antibodies and genome in aqueous humor. Am J Ophthalmol. 2004;138(1):46–54.CrossRefGoogle Scholar
  14. 14.
    de Groot-Mijnes JD, et al. Rubella virus is associated with Fuchs heterochromic iridocyclitis. Am J Ophthalmol. 2006;141(1):212–4.CrossRefGoogle Scholar
  15. 15.
    Birnbaum AD, et al. Epidemiologic relationship between Fuchs heterochromic iridocyclitis and the United States rubella vaccination program. Am J Ophthalmol. 2007;144(3):424–8.CrossRefGoogle Scholar
  16. 16.
    Teoh SB, Thean L, Koay E. Cytomegalovirus in aetiology of Posner-Schlossman syndrome: evidence from quantitative polymerase chain reaction. Eye (Lond). 2005;19(12):1338–40.CrossRefGoogle Scholar
  17. 17.
    Chee SP, et al. Clinical features of cytomegalovirus anterior uveitis in immunocompetent patients. Am J Ophthalmol. 2008;145(5):834–40.CrossRefGoogle Scholar
  18. 18.
    Mahendradas P, et al. Ocular manifestations associated with chikungunya. Ophthalmology. 2008;115(2):287–91.CrossRefGoogle Scholar
  19. 19.
    Lalitha P, et al. Ocular involvement associated with an epidemic outbreak of chikungunya virus infection. Am J Ophthalmol. 2007;144(4):552–6.CrossRefGoogle Scholar
  20. 20.
    Mittal A, et al. Uveitis during outbreak of Chikungunya fever. Ophthalmology. 2007;114(9):1798.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Babu K, et al. Clinical profile of isolated viral anterior uveitis in a south Indian patient population. Ocul Immunol Inflamm. 2014;22(5):356–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rocha VFD, et al. Chikungunya virus infection associated with encephalitis and anterior uveitis. Ocul Immunol Inflamm. 2017;26:1–3.Google Scholar
  23. 23.
    Chomel B. Lyme disease. Rev Sci Tech. 2015;34(2):569–76.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mikkila H, et al. The significance of serum anti-Borrelia antibodies in the diagnostic work-up of uveitis. Eur J Ophthalmol. 1997;7(3):251–5.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wertheim MS, et al. In vivo confocal microscopy of keratic precipitates. Arch Ophthalmol. 2004;122(12):1773–81.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mocan MC, Kadayifcilar S, Irkec M. Keratic precipitate morphology in uveitic syndromes including Behcet's disease as evaluated with in vivo confocal microscopy. Eye (Lond). 2009;23(5):1221–7.CrossRefGoogle Scholar
  27. 27.
    Mahendradas P, et al. In vivo confocal microscopy of keratic precipitates in infectious versus noninfectious uveitis. Ophthalmology. 2010;117(2):373–80.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lim LL, et al. In vivo laser confocal microscopy using the HRT-Rostock cornea module: diversity and diagnostic implications in patients with uveitis. Ocul Immunol Inflamm. 2017;26:1–10.Google Scholar
  29. 29.
    Kanavi MR, Soheilian M, Naghshgar N. Confocal scan of keratic precipitates in uveitic eyes of various etiologies. Cornea. 2010;29(6):650–4.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Labbe A, et al. Evaluation of keratic precipitates and corneal endothelium in Fuchs' heterochromic cyclitis by in vivo confocal microscopy. Br J Ophthalmol. 2009;93(5):673–7.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mocan MC, Kadayifcilar S, Irkec M. In vivo confocal microscopic evaluation of keratic precipitates and endothelial morphology in Fuchs' uveitis syndrome. Eye (Lond). 2012;26(1):119–25.CrossRefGoogle Scholar
  32. 32.
    Kanavi MR, et al. Confocal scan features of keratic precipitates in Fuchs heterochromic iridocyclitis. Cornea. 2010;29(1):39–42.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Shiraishi A, et al. Demonstration of "owl's eye" morphology by confocal microscopy in a patient with presumed cytomegalovirus corneal endotheliitis. Am J Ophthalmol. 2007;143(4):715–7.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kobayashi A, et al. Clinical significance of owl eye morphologic features by in vivo laser confocal microscopy in patients with cytomegalovirus corneal endotheliitis. Am J Ophthalmol. 2012;153(3):445–53.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yokogawa H, et al. In vivo imaging of coin-shaped lesions in cytomegalovirus corneal endotheliitis by anterior segment optical coherence tomography. Cornea. 2014;33(12):1332–5.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mattes FM, et al. Histopathological detection of owl's eye inclusions is still specific for cytomegalovirus in the era of human herpesviruses 6 and 7. J Clin Pathol. 2000;53(8):612–4.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kobayashi R, et al. Clinical findings of anterior segment spectral domain optical coherence tomography images in cytomegalovirus corneal Endotheliitis. Cornea. 2017;36(4):411–4.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rose-Nussbaumer J, et al. Aqueous cell differentiation in anterior uveitis using Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56(3):1430–6.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Miyanaga M, et al. A significant association of viral loads with corneal endothelial cell damage in cytomegalovirus anterior uveitis. Br J Ophthalmol. 2010;94(3):336–40.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Oliveira F, Oliveira Motta AC, Muccioli C. Corneal specular microscopy in infectious and noninfectious uveitis. Arq Bras Oftalmol. 2009;72(4):457–61.CrossRefGoogle Scholar
  41. 41.
    Siak J, Mahendradas P, Chee SP. Multimodal Imaging in Anterior Uveitis. Ocul Immunol Inflamm. 2017;25(3):434–46.CrossRefGoogle Scholar
  42. 42.
    Yang P, et al. Clinical features of Chinese patients with Fuchs' syndrome. Ophthalmology. 2006;113(3):473–80.CrossRefGoogle Scholar
  43. 43.
    Liu Q, et al. Iris autofluorescence in Fuchs' heterochromic uveitis. Br J Ophthalmol. 2016;100(10):1397–402.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yamamoto S, et al. Detecting herpesvirus DNA in uveitis using the polymerase chain reaction. Br J Ophthalmol. 1996;80(5):465–8.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Van der Lelij A, et al. Anterior uveitis with sectoral iris atrophy in the absence of keratitis: a distinct clinical entity among herpetic eye diseases. Ophthalmology. 2000;107(6):1164–70.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Pathanapitoon K, et al. The diagnostic value of intraocular fluid analysis by polymerase chain reaction in Thai patients with uveitis. Trans R Soc Trop Med Hyg. 2011;105(11):650–4.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Anwar Z, et al. The diagnostic utility of anterior chamber paracentesis with polymerase chain reaction in anterior uveitis. Am J Ophthalmol. 2013;155(5):781–6.CrossRefGoogle Scholar
  48. 48.
    Sugita S, et al. Use of multiplex PCR and real-time PCR to detect human herpes virus genome in ocular fluids of patients with uveitis. Br J Ophthalmol. 2008;92(7):928–32.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Arora SK, et al. Diagnostic efficacy of polymerase chain reaction in granulomatous uveitis. Tuber Lung Dis. 1999;79(4):229–33.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kongyai N, et al. Viral causes of unexplained anterior uveitis in Thailand. Eye (Lond). 2012;26(4):529–34.CrossRefGoogle Scholar
  51. 51.
    Errera MH, et al. Findings in detection of Herpesviridae by polymerase chain reaction and intraocular antibody production in a case series of anterior uveitis. Ocul Immunol Inflamm. 2013;21(1):61–8.CrossRefGoogle Scholar
  52. 52.
    Hettinga YM, et al. Infectious involvement in a tertiary center pediatric uveitis cohort. Br J Ophthalmol. 2015;99(1):103–7.CrossRefGoogle Scholar
  53. 53.
    Couto C, et al. Chronic postoperative Mycobacterium gordonae endophthalmitis in a patient with phakic intraocular lens. Ocul Immunol Inflamm. 2013;21(6):491–4.CrossRefGoogle Scholar
  54. 54.
    Myers TD, et al. Iris nodules associated with infectious uveitis. Br J Ophthalmol. 2002;86(9):969–74.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hunter RS, Lobo AM. Current diagnostic approaches to infectious anterior uveitis. Int Ophthalmol Clin. 2011;51(4):145–56.CrossRefGoogle Scholar
  56. 56.
    Gupta K, Hoepner JA, Streeten BW. Pseudomelanoma of the iris in herpes simplex keratoiritis. Ophthalmology. 1986;93(12):1524–7.CrossRefGoogle Scholar
  57. 57.
    Stokes DW, O'Day DM. Iris nodule and intralenticular abscess associated with Propionibacterium acnes endophthalmitis. Arch Ophthalmol. 1992;110(7):921–2.CrossRefGoogle Scholar
  58. 58.
    Gain P, et al. Iris tuberculosis. A propos of a case diagnosed by iridectomy. J Fr Ophtalmol. 1994;17(8–9):525–8.Google Scholar
  59. 59.
    Bate SL, Dollard SC, Cannon MJ. Cytomegalovirus seroprevalence in the United States: the national health and nutrition examination surveys, 1988-2004. Clin Infect Dis. 2010;50(11):1439–47.CrossRefGoogle Scholar
  60. 60.
    Antona D, et al. Seroprevalence of cytomegalovirus infection in France in 2010. Epidemiol Infect. 2017;145(7):1471–8.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Mochizuki M, et al. A new era of uveitis: impact of polymerase chain reaction in intraocular inflammatory diseases. Jpn J Ophthalmol. 2017;61(1):1–20.CrossRefGoogle Scholar
  62. 62.
    Smit D, et al. Polymerase chain reaction and Goldmann-Witmer coefficient to examine the role of Epstein-Barr virus in uveitis. Ocul Immunol Inflamm. 2017;27:1–6.Google Scholar
  63. 63.
    Wensing B, Mochizuki M, De Boer JH. Clinical characteristics of herpes simplex virus associated anterior uveitis. Ocul Immunol Inflamm. 2018;26:1–5.CrossRefGoogle Scholar
  64. 64.
    WHO, Herpes simplex virus. Available at: http://www.who.int/mediacentre/factsheets/fs400/en/. Accessed 3 March 2018. , 2017.
  65. 65.
    Liesegang TJ, et al. Epidemiology of ocular herpes simplex. Incidence in Rochester, Minn, 1950 through 1982. Arch Ophthalmol. 1989;107(8):1155–9.CrossRefGoogle Scholar
  66. 66.
    Takase H, et al. Comparison of the ocular characteristics of anterior uveitis caused by herpes simplex virus, varicella-zoster virus, and cytomegalovirus. Jpn J Ophthalmol. 2014;58(6):473–82.CrossRefGoogle Scholar
  67. 67.
    Tugal-Tutkun I, Otuk-Yasar B, Altinkurt E. Clinical features and prognosis of herpetic anterior uveitis: a retrospective study of 111 cases. Int Ophthalmol. 2010;30(5):559–65.CrossRefGoogle Scholar
  68. 68.
    Miserocchi E, et al. Clinical features of ocular herpetic infection in an Italian referral center. Cornea. 2014;33(6):565–70.CrossRefGoogle Scholar
  69. 69.
    Darougar S, Wishart MS, Viswalingam ND. Epidemiological and clinical features of primary herpes simplex virus ocular infection. Br J Ophthalmol. 1985;69(1):2–6.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Wilhelmus KR, Falcon MG, Jones BR. Bilateral herpetic keratitis. Br J Ophthalmol. 1981;65(6):385–7.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Souza PM, Holland EJ, Huang AJ. Bilateral herpetic keratoconjunctivitis. Ophthalmology. 2003;110(3):493–6.CrossRefGoogle Scholar
  72. 72.
    Borkar DS, et al. Association between atopy and herpetic eye disease: results from the pacific ocular inflammation study. JAMA Ophthalmol. 2014;132(3):326–31.CrossRefGoogle Scholar
  73. 73.
    Miserocchi E, et al. Visual outcome in herpes simplex virus and varicella zoster virus uveitis: a clinical evaluation and comparison. Ophthalmology. 2002;109(8):1532–7.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Wensing B, et al. Comparison of rubella virus- and herpes virus-associated anterior uveitis: clinical manifestations and visual prognosis. Ophthalmology. 2011;118(10):1905–10.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Goldstein DA, et al. Persistent pupillary dilation in herpes simplex uveitis. Can J Ophthalmol. 2009;44(3):314–6.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Young RC, et al. Incidence, recurrence, and outcomes of herpes simplex virus eye disease in Olmsted County, Minnesota, 1976-2007: the effect of oral antiviral prophylaxis. Arch Ophthalmol. 2010;128(9):1178–83.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Johnson RW, et al. Herpes zoster epidemiology, management, and disease and economic burden in Europe: a multidisciplinary perspective. Ther Adv Vaccines. 2015;3(4):109–20.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Tseng HF, et al. Herpes zoster vaccine in older adults and the risk of subsequent herpes zoster disease. JAMA. 2011;305:160–6. (1538-3598 (Electronic))CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Ragozzino MF, Melton LJ 3rd, et al. Population-based study of herpes zoster and its sequelae. Medicine (Baltimore). 1982;61:310–6. (0025-7974 (Print))CrossRefGoogle Scholar
  80. 80.
    Thean JH, Hall AJ, Stawell RJ. Uveitis in Herpes zoster ophthalmicus. Clin Exp Ophthalmol. 2001;29(6):406–10.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Yawn BP, et al. Herpes zoster--eye complications: rates and trends. Mayo Clin Proc. 2013;88:562–70. (0025-6196 (Print)CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Kido S, et al. Association of varicella zoster virus load in the aqueous humor with clinical manifestations of anterior uveitis in herpes zoster ophthalmicus and zoster sine herpete. Br J Ophthalmol. 2008;92(4):505–8.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Wong JX, et al. Efficacy and safety of topical ganciclovir in the management of cytomegalovirus (CMV)-related anterior uveitis. J Ophthalmic Inflamm Infect. 2016;6(1):10.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Koizumi N, et al. Clinical features and management of cytomegalovirus corneal endotheliitis: analysis of 106 cases from the Japan corneal endotheliitis study. Br J Ophthalmol. 2015;99(1):54–8.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Accorinti M, et al. Cytomegalovirus anterior uveitis: long-term follow-up of immunocompetent patients. Graefes Arch Clin Exp Ophthalmol. 2014;252(11):1817–24.CrossRefGoogle Scholar
  86. 86.
    van Boxtel LA, et al. Cytomegalovirus as a cause of anterior uveitis in immunocompetent patients. Ophthalmology. 2007;114(7):1358–62.CrossRefGoogle Scholar
  87. 87.
    Chee SP, Jap A. Presumed Fuchs heterochromic iridocyclitis and Posner-Schlossman syndrome: comparison of cytomegalovirus-positive and negative eyes. Am J Ophthalmol. 2008;146(6):883–9.e1.CrossRefGoogle Scholar
  88. 88.
    Vijayalakshmi P, et al. Ocular manifestations of congenital rubella syndrome in a developing country. Indian J Ophthalmol. 2002;50(4):307–11.Google Scholar
  89. 89.
    de Visser L, et al. Rubella virus-associated uveitis: clinical manifestations and visual prognosis. Am J Ophthalmol. 2008;146(2):292–7.CrossRefGoogle Scholar
  90. 90.
    Rothova A, Schneider M, de Groot-Mijnes JD. Human immunodeficiency virus-induced uveitis: intraocular and plasma human immunodeficiency virus-1 RNA loads. Ophthalmology. 2008;115(11):2062–4.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Pathanapitoon K, et al. Intraocular and plasma HIV-1 RNA loads and HIV uveitis. AIDS. 2011;25(1):81–6.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Kunavisarut P, et al. Clinical manifestations of human immunodeficiency virus-induced uveitis. Ophthalmology. 2012;119(7):1455–9.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Shantha JG, Crozier I, Yeh S. An update on ocular complications of Ebola virus disease. Curr Opin Ophthalmol. 2017;28(6):600–6.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Team WIS. Ebola haemorrhagic fever in Sudan, 1976. Bull World Health Organ. 1978;56(2):247–70.Google Scholar
  95. 95.
    Tiffany A, et al. Ebola virus disease complications as experienced by survivors in Sierra Leone. Clin Infect Dis. 2016;62(11):1360–6.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Hereth-Hebert E, et al. Ocular complications in survivors of the Ebola outbreak in Guinea. Am J Ophthalmol. 2017;175:114–21.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Mattia JG, et al. Early clinical sequelae of Ebola virus disease in Sierra Leone: a cross-sectional study. Lancet Infect Dis. 2016;16(3):331–8.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Shantha JG, et al. Ophthalmic manifestations and causes of vision impairment in Ebola virus disease survivors in Monrovia, Liberia. Ophthalmology. 2017;124(2):170–7.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Varkey JB, et al. Persistence of Ebola virus in ocular fluid during convalescence. N Engl J Med. 2015;372(25):2423–7.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Gear JS, et al. Outbreak of Marburg virus disease in Johannesburg. Br Med J. 1975;4(5995):489–93.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Broadhurst MJ, Brooks TJ, Pollock NR. Diagnosis of Ebola virus disease: past, present, and future. Clin Microbiol Rev. 2016;29(4):773–93.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    WHO, Dengue and severe dengue-fact sheet 117. Available at: http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed 15 Feb 2018., 2017.Google Scholar
  103. 103.
    Yip VC, Sanjay S, Koh YT. Ophthalmic complications of dengue fever: a systematic review. Ophthalmol Ther. 2012;1(1):2.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Teoh S, et al. A re-look at ocular complications in dengue fever and dengue haemorrhagic fever. Dengue Bulletin. 2006;30:184–90.Google Scholar
  105. 105.
    Gupta A, et al. Uveitis following dengue fever. Eye (Lond). 2009;23(4):873–6.CrossRefGoogle Scholar
  106. 106.
    WHO. Dengue- guidelines for diagnosis, treatment, prevention and control. New Edition. Geneva; 2009. p. 91.Google Scholar
  107. 107.
    Bouri N, et al. Return of epidemic dengue in the United States: implications for the public health practitioner. Public Health Rep. 2012;127(3):259–66.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Phillips ML. Dengue reborn: widespread resurgence of a resilient vector. Environ Health Perspect. 2008;116(9):A382–8.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    WHO, Chikungunya-Fact Sheet 327. Available at: http://www.who.int/mediacentre/factsheets/fs327/en/. Accessed 18 February 2018, 2017.
  110. 110.
    Lee VJ, et al. Simple clinical and laboratory predictors of Chikungunya versus dengue infections in adults. PLoS Negl Trop Dis. 2012. (1935-2735 (Electronic));6:e1786.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Northey LC, et al. Syphilitic uveitis and optic neuritis in Sydney, Australia. Br J Ophthalmol. 2015;99(9):1215–9.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Mathew RG, Goh BT, Westcott MC. British ocular syphilis study (BOSS): 2-year national surveillance study of intraocular inflammation secondary to ocular syphilis. Invest Ophthalmol Vis Sci. 2014;55(8):5394–400.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Yap SC, et al. Syphilitic uveitis in a Singaporean population. Ocul Immunol Inflamm. 2014;22(1):9–14.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Yang P, et al. Ocular manifestations of syphilitic uveitis in Chinese patients. Retina. 2012;32(9):1906–14.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Hughes EH, et al. Syphilitic retinitis and uveitis in HIV-positive adults. Clin Exp Ophthalmol. 2010;38(9):851–6.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Hong MC, et al. Ocular uveitis as the initial presentation of syphilis. J Chin Med Assoc. 2007;70(7):274–80.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Tran TH, et al. Syphilitic uveitis in patients infected with human immunodeficiency virus. Graefes Arch Clin Exp Ophthalmol. 2005;243(9):863–9.CrossRefGoogle Scholar
  118. 118.
    Shalaby IA, et al. Syphilitic uveitis in human immunodeficiency virus-infected patients. Arch Ophthalmol. 1997;115(4):469–73.CrossRefGoogle Scholar
  119. 119.
    Anshu A, Cheng CL, Chee SP. Syphilitic uveitis: an Asian perspective. Br J Ophthalmol. 2008;92(5):594–7.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Zwink FB, Dunlop EM. Clinically silent anterior uveitis in secondary syphilis. Trans Ophthalmol Soc U K. 1976;96(1):148–50.Google Scholar
  121. 121.
    Ng KK, et al. Presumed tuberculous uveitis in non-endemic country for tuberculosis: case series from a New Zealand tertiary uveitis clinic. Clin Exp Ophthalmol. 2017;45(4):357–65.CrossRefGoogle Scholar
  122. 122.
    Khochtali S, et al. The spectrum of presumed tubercular uveitis in Tunisia, North Africa. Int Ophthalmol. 2015;35(5):663–71.Google Scholar
  123. 123.
    Ang M, et al. Clinical signs of uveitis associated with latent tuberculosis. Clin Exp Ophthalmol. 2012;40(7):689–96.CrossRefGoogle Scholar
  124. 124.
    Gineys R, et al. QuantiFERON-TB gold cut-off value: implications for the management of tuberculosis-related ocular inflammation. Am J Ophthalmol. 2011;152(3):433–440 e1.CrossRefGoogle Scholar
  125. 125.
    Al-Mezaine HS, et al. Clinical and optical coherence tomographic findings and outcome of treatment in patients with presumed tuberculous uveitis. Int Ophthalmol. 2008;28(6):413–23.CrossRefGoogle Scholar
  126. 126.
    Rosen PH, Spalton DJ, Graham EM. Intraocular tuberculosis. Eye (Lond). 1990;4(Pt 3):486–92.CrossRefGoogle Scholar
  127. 127.
    Urzua CA, et al. Clinical features and prognostic factors in presumed ocular tuberculosis. Curr Eye Res. 2017;42(7):1029–34.CrossRefGoogle Scholar
  128. 128.
    Karma A, et al. Diagnosis and clinical characteristics of ocular Lyme borreliosis. Am J Ophthalmol. 1995;119(2):127–35.CrossRefGoogle Scholar
  129. 129.
    Pleyer U, et al. Detection of Borrelia burgdorferi DNA in urine of patients with ocular Lyme borreliosis. Br J Ophthalmol. 2001;85(5):552–5.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Mikkila HO, et al. The expanding clinical spectrum of ocular Lyme borreliosis. Ophthalmology. 2000;107(3):581–7.CrossRefGoogle Scholar
  131. 131.
    Smith JR, Coster DJ. Diagnosing the systemic associations of anterior uveitis. Aust N Z J Ophthalmol. 1998;26(4):319–26.CrossRefGoogle Scholar
  132. 132.
    Tabbara KF. Tuberculosis. Curr Opin Ophthalmol. 2007;18(6):493–501.CrossRefGoogle Scholar
  133. 133.
    Gupta V, et al. Clinics of ocular tuberculosis. Ocul Immunol Inflamm. 2015;23(1):14–24.CrossRefGoogle Scholar
  134. 134.
    Alvarez GG, Roth VR, Hodge W. Ocular tuberculosis: diagnostic and treatment challenges. Int J Infect Dis. 2009;13(4):432–5.CrossRefGoogle Scholar
  135. 135.
    Velu J, et al. Hypopyon uveitis-a rare presentation of intraocular tuberculosis. Ocul Immunol Inflamm. 2013;21(3):251–3.CrossRefGoogle Scholar
  136. 136.
    Chatziralli IP, et al. Hypopyon in the context of tuberculous uveitis. Clin Exp Optom. 2012;95(2):241–3.CrossRefGoogle Scholar
  137. 137.
    Rathinam SR, Rao NA. Tuberculous intraocular infection presenting with pigmented hypopyon: a clinicopathological case report. Br J Ophthalmol. 2004;88(5):721–2.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Shetty SB, et al. Tuberculous uveitis presenting as pigmented hypopyon – a case report. Am J Ophthalmol Case Rep. 2017;7:1–3.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Gupta A, et al. Ocular signs predictive of tubercular uveitis. Am J Ophthalmol. 2010;149(4):562–70.CrossRefGoogle Scholar
  140. 140.
    Boutros A, Rahn E, Nauheim R. Iritis and papillitis as a primary presentation of Lyme disease. Ann Ophthalmol. 1990;22(1):24–5.Google Scholar
  141. 141.
    Winward KE, et al. Ocular Lyme borreliosis. Am J Ophthalmol. 1989;108(6):651–7.CrossRefGoogle Scholar
  142. 142.
    Klaeger AJ, Herbort CP. Cotton wool spots as possible indicators of retinal vascular pathology in ocular Lyme borreliosis. Int Ophthalmol. 2010;30(5):599–602.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Zaidman GW. The ocular manifestations of Lyme disease. Int Ophthalmol Clin. 1997;37(2):13–28.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Rooney JF, et al. Oral acyclovir to suppress frequently recurrent herpes labialis. A double-blind, placebo-controlled trial. Ann Intern Med. 1993;118(4):268–72.CrossRefGoogle Scholar
  145. 145.
    Spruance SL, et al. Acyclovir prevents reactivation of herpes simplex labialis in skiers. JAMA. 1988;260(11):1597–9.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Mattison HR, et al. Double-blind, placebo-controlled trial comparing long-term suppressive with short-term oral acyclovir therapy for management of recurrent genital herpes. Am J Med. 1988;85(2a):20–5.Google Scholar
  147. 147.
    Mertz GJ, et al. Long-term acyclovir suppression of frequently recurring genital herpes simplex virus infection. A multicenter double-blind trial. JAMA. 1988;260(2):201–6.CrossRefGoogle Scholar
  148. 148.
    Group, H.E.D.S. Acyclovir for the prevention of recurrent herpes simplex virus eye disease. Herpetic Eye Disease Study Group. N Engl J Med. 1998;339(5):300–6.CrossRefGoogle Scholar
  149. 149.
    Hung SO, Patterson A, Rees PJ. Pharmacokinetics of oral acyclovir (Zovirax) in the eye. Br J Ophthalmol. 1984;68(3):192–5.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    A controlled trial of oral acyclovir for iridocyclitis caused by herpes simplex virus. The Herpetic Eye Disease Study Group. Arch Ophthalmol. 1996;114(9):1065–72.Google Scholar
  151. 151.
    Cobo LM, et al. Oral acyclovir in the treatment of acute herpes zoster ophthalmicus. Ophthalmology. 1986;93(6):763–70.CrossRefGoogle Scholar
  152. 152.
    Pleyer U, Chee SP. Current aspects on the management of viral uveitis in immunocompetent individuals. Clin Ophthalmol. 2015;9:1017–28.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Jap A, Chee SP. Viral anterior uveitis. Curr Opin Ophthalmol. 2011;22(6):483–8.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Gilbert C, Boivin G. Human cytomegalovirus resistance to antiviral drugs. Antimicrob Agents Chemother. 2005;49(3):873–83.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Chee SP, Jap A. Cytomegalovirus anterior uveitis: outcome of treatment. Br J Ophthalmol. 2010;94(12):1648–52.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Hwang YS, et al. Intravitreal loading injection of ganciclovir with or without adjunctive oral valganciclovir for cytomegalovirus anterior uveitis. Graefes Arch Clin Exp Ophthalmol. 2010;248(2):263–9.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    de Schryver I, et al. Diagnosis and treatment of cytomegalovirus iridocyclitis without retinal necrosis. Br J Ophthalmol. 2006;90(7):852–5.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Antoun J, et al. Topical Ganciclovir in cytomegalovirus anterior uveitis. J Ocul Pharmacol Ther. 2017;33(4):313–8.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Chee SP, et al. Corneal endotheliitis associated with evidence of cytomegalovirus infection. Ophthalmology. 2007;114(4):798–803.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Hwang YS, et al. The validity of clinical feature profiles for cytomegaloviral anterior segment infection. Graefes Arch Clin Exp Ophthalmol. 2011;249(1):103–10.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of OphthalmologyMassachusetts Eye and Ear, Harvard Medical SchoolBostonUSA
  2. 2.Veterans Affairs Boston Healthcare SystemBostonUSA

Personalised recommendations