Advertisement

Analysis of Data Aggregation Techniques in WSN

  • Nihar Ranjan RoyEmail author
  • Pravin Chandra
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1059)

Abstract

Wireless sensor networks (WSNs) produce a huge amount of application-specific data. These data need to be processed and transmitted to base station, which is a costly affair. Since WSN nodes are resource-constrained, efficient data processing and conserving energy are prime challenges. It has been observed that most of the data sensed by the sensors are redundant in nature. If data redundancy can be reduced, then it will lead to an increased lifetime of the network and reduced latency. In this paper, we surveyed different techniques for reducing redundancy in data, and in particular through aggregation. We have discussed data aggregation taxonomy, challenges and critically analysed aggregation techniques proposed in the last 10 years.

Keywords

Data redundancy Data aggregation Data compression Lifetime Wireless sensor network 

References

  1. 1.
    Akyildiz I, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Networks 38(4):393–422CrossRefGoogle Scholar
  2. 2.
    Pantazis NA, Nikolidakis SA, Vergados DD (2013) Energy-efficient routing protocols in wireless sensor networks: a survey. IEEE Commun Surveys Tutorials 15(2):551–591CrossRefGoogle Scholar
  3. 3.
    Rault T, Bouabdallah A, Challal Y (2014) Energy efficiency in wireless sensor networks: a top-down survey. Comput Networks 67(Suppl C):104–122CrossRefGoogle Scholar
  4. 4.
    Zuhra FT, Bakar KA, Ahmed A, Tunio MA (2017) Routing protocols in wireless body sensor networks: a comprehensive survey. J Network Comput Appl 99(Suppl C):73–97CrossRefGoogle Scholar
  5. 5.
    Rai R, Rai P (2019) Survey on energy-efficient routing protocols in wireless sensor networks using game theory. In: Advances in communication, cloud, and big data. Springer, Berlin, pp. 1–9Google Scholar
  6. 6.
    Heinzelman W, Chandrakasan A, Balakrishnan H (2002) An application-specific protocol architecture for wireless microsensor networks. IEEE Trans Wireless Commun 1:660–670CrossRefGoogle Scholar
  7. 7.
    Wang A, Sodini C (2004) A simple energy model for wireless microsensor transceivers. In: Global telecommunications conference (GLOBECOM ’04). IEEE, vol 5, pp 3205–3209, Nov 2004Google Scholar
  8. 8.
    Miller M, Vaidya N (2005) A mac protocol to reduce sensor network energy consumption using a wakeup radio. IEEE Trans Mob Comput 4:228–242CrossRefGoogle Scholar
  9. 9.
    Mallinson M, Drane P, Hussain S (2007) Discrete radio power level consumption model in wireless sensor networks. In: IEEE International conference on mobile adhoc and sensor systems (MASS 2007), pp 1–6, Oct 2007Google Scholar
  10. 10.
    Han B, Zhang D, Yang T (2008) Energy consumption analysis and energy management strategy for sensor node. In: International conference on information and automation (ICIA 2008), pp 211–214, June 2008Google Scholar
  11. 11.
    Halgamuge MN, Zukerman M, Ramamohanarao K, Vu HI (2009) An estimation of sensor energy consumption. In: Progress in electromagnetics research BGoogle Scholar
  12. 12.
    Zhou H-Y, Luo D-Y, Gao Y, Zuo D-C (2011) Modeling of node energy consumption for wireless sensor networks. Wireless Sens Network 3(01):18CrossRefGoogle Scholar
  13. 13.
    Kumar V, Yadav S, Kumar V, Sengupta J, Tripathi R, Tiwari S (2018) Optimal clustering in weibull distributed wsns based on realistic energy dissipation model. In: Progress in computing, analytics and networking, pp 61–73. Springer, BerlinGoogle Scholar
  14. 14.
    Madden S, Franklin MJ, Hellerstein JM, Hong W (2002) Tag: a tiny aggregation service for ad-hoc sensor networks. ACM SIGOPS Oper Syst Rev 36:131–146CrossRefGoogle Scholar
  15. 15.
    Roy NR, Chandra P (2018) A note on optimum cluster estimation in leach protocol. IEEE Access 6:65690–65696CrossRefGoogle Scholar
  16. 16.
    Hoang AT, Motani M (2005) Exploiting wireless broadcast in spatially correlated sensor networks. In: IEEE international conference on commun (ICC 2005), vol 4, pp 2807–2811. IEEEGoogle Scholar
  17. 17.
    Hoang AT, Motani M (2007) Collaborative broadcasting and compression in cluster-based wireless sensor networks. ACM Trans Sens Networks (TOSN) 3(3):17CrossRefGoogle Scholar
  18. 18.
    Kimura N, Latifi S (2005) A survey on data compression in wireless sensor networks. In: International conference on information technology: coding and computing (ITCC 2005), vol 2, pp 8–13. IEEEGoogle Scholar
  19. 19.
    Srisooksai T, Keamarungsi K, Lamsrichan P, Araki K (2012) Practical data compression in wireless sensor networks: a survey. J Network Comput Appl 35(1):37–59CrossRefGoogle Scholar
  20. 20.
    Barr KC, Asanović K (2006) Energy-aware lossless data compression. ACM Trans Comput Syst (TOCS) 24(3):250–291CrossRefGoogle Scholar
  21. 21.
    Oka A, Lampe L (2008) Energy efficient distributed filtering with wireless sensor networks. IEEE Trans Signal Process 56(5):2062–2075MathSciNetCrossRefGoogle Scholar
  22. 22.
    Teng J, Snoussi H, Richard C (2010) Decentralized variational filtering for target tracking in binary sensor networks. IEEE Trans Mob Comput 9(10):1465–1477CrossRefGoogle Scholar
  23. 23.
    Tang Z, Glover I, Evans A, Monro D, He J (2006) An adaptive distributed source coding scheme for wireless sensor networks. In: 12th European wireless conference, University of BathGoogle Scholar
  24. 24.
    Wang W, Peng D, Wang H, Sharif H, Chen H-H (2009) Cross-layer multirate interaction with distributed source coding in wireless sensor networks. IEEE Trans Wireless Commun 8(2):787–795CrossRefGoogle Scholar
  25. 25.
    Shao-Liang P, Shan-Shan L, Yu-Xing P, Pei-Dong Z, Nong X (2007) A delay sensitive feedback control data aggregation approach in wireless sensor network. In: International conference on computational science. Springer, Berlin, pp 393–400CrossRefGoogle Scholar
  26. 26.
    Heinzelman W, Chandrakasan A, Balakrishnan H (2000) Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd annual Hawaii international conference on system sciences, vol 2, p 10, Jan 2000Google Scholar
  27. 27.
    Younis O, Fahmy S (2004) Heed: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans Mob Comput 3(4):366–379CrossRefGoogle Scholar
  28. 28.
    Smaragdakis G, Matta I, Bestavros A (2004) Sep: a stable election protocol for clustered heterogeneous wireless sensor networks. Technical report, Boston University, Computer Science DepartmentGoogle Scholar
  29. 29.
    González-Manzano L, de Fuentes JM, Pastrana S, Peris-Lopez P, Hernández-Encinas L (2016) Pagiot-privacy-preserving aggregation protocol for internet of things. J Network Comput Appl 71:59–71CrossRefGoogle Scholar
  30. 30.
    Kim KT, Lyu CH, Moon SS, Youn HY (2010) Tree-based clustering (tbc) for energy efficient wireless sensor networks. In: IEEE 24th international conference on advanced information networking and applications workshops (WAINA). IEEE, pp 680–685Google Scholar
  31. 31.
    Kalpakis K, Dasgupta K, Namjoshi P (2002) Maximum lifetime data gathering and aggregation in wireless sensor networks. In: Networks. World Scientific, pp 685–696Google Scholar
  32. 32.
    Han Z, Wu J, Zhang J, Liu L, Tian K (2014) A general self-organized tree-based energy-balance routing protocol for wireless sensor network. IEEE Trans Nuclear Sci 61(2):732–740CrossRefGoogle Scholar
  33. 33.
    Shivkumar S, Kavitha A, Swaminathan J, Navaneethakrishnan R (2016) General self-organizing tree-based energy balance routing protocol with clustering for wireless sensor network. Asian J Inform Technol 15(24):5067–5074Google Scholar
  34. 34.
    Bahi JM, Makhoul A, Medlej M (2012) Frequency filtering approach for data aggregation in periodic sensor networks. In: Network operations and management symposium (NOMS). IEEE, pp 570–573Google Scholar
  35. 35.
    Dasgupta K, Kalpakis K, Namjoshi P (2003) An efficient clustering-based heuristic for data gathering and aggregation in sensor networks. In: Wireless communications and networking (WCNC 2003). IEEE, vol 3, pp 1948–1953Google Scholar
  36. 36.
    Zhang B, Guo W, Chen G, Li J (2013) In-network data aggregation route strategy based on energy balance in wsns. In: WiOpt, pp 540–547Google Scholar
  37. 37.
    Xiao S, Li B, Yuan X (2015) Maximizing precision for energy-efficient data aggregation in wireless sensor networks with lossy links. Ad Hoc Networks 26:103–113CrossRefGoogle Scholar
  38. 38.
    Atoui I, Ahmad A, Medlej M, Makhoul A, Tawbe S, Hijazi A (2016) Tree-based data aggregation approach in wireless sensor network using fitting functions. In: 2016 sixth international conference on digital information processing and communications (ICDIPC). IEEE, pp 146–150Google Scholar
  39. 39.
    Yu Y, Prasanna VK, Krishnamachari B (2006) Energy minimization for real-time data gathering in wireless sensor networks. IEEE Trans Wireless Commun 5(11):3087–3096CrossRefGoogle Scholar
  40. 40.
    Bagaa M, Younis M, Ouadjaout A, Badache N (2013) Efficient multi-path data aggregation scheduling in wireless sensor networks. In: 2013 IEEE international conference on communications (ICC). IEEE, pp 1560–1564Google Scholar
  41. 41.
    Kumar S, Kim H (2019) Energy efficient scheduling in wireless sensor networks for periodic data gathering. In: IEEE accessGoogle Scholar
  42. 42.
    Sarangi K, Bhattacharya I (2019) A study on data aggregation techniques in wireless sensor network in static and dynamic scenarios. In: Innovations in systems and software engineering, pp 1–14CrossRefGoogle Scholar
  43. 43.
    Yadav S, Yadav RS (2019) Redundancy elimination during data aggregation in wireless sensor networks for iot systems. In: Recent trends in communication, computing, and electronics. Springer, Berlin, pp 195–205Google Scholar
  44. 44.
    SreeRanjani N, Ananth A, Reddy LS (2018) An energy efficient data gathering scheme in wireless sensor networks using adaptive optimization algorithm. J Comput Theor Nanosci 15(11–12):3456–3461CrossRefGoogle Scholar
  45. 45.
    Khriji S, Raventos GV, Kammoun I, Kanoun O (2018) Redundancy elimination for data aggregation in wireless sensor networks. In: 2018 15th international multi-conference on systems, signals & devices (SSD). IEEE, , pp 28–33Google Scholar
  46. 46.
    Mottaghi S, Zahabi MR (2015) Optimizing leach clustering algorithm with mobile sink and rendezvous nodes. AEU-Int J Electron Commun 69(2):507–514CrossRefGoogle Scholar
  47. 47.
    Yuan F, Zhan Y, Wang Y (2014) Data density correlation degree clustering method for data aggregation in wsn. IEEE Sens J 14(4):1089–1098CrossRefGoogle Scholar
  48. 48.
    Guo S, Wang C, Yang Y (2013) Mobile data gathering with wireless energy replenishment in rechargeable sensor networks. In: INFOCOM, 2013 Proceedings IEEE. IEEE, , pp 1932–1940Google Scholar
  49. 49.
    Jin N, Chen K, Gu T (2012) Energy balanced data collection in wireless sensor networks. In: 2012 20th IEEE international conference on network protocols (ICNP). IEEE, pp 1–10Google Scholar
  50. 50.
    Mathapati BS, Patil SR, Mytri V (2012) Energy efficient reliable data aggregation technique for wireless sensor networks. In: 2012 international conference on computing sciences (ICCS). IEEE, pp 153–158Google Scholar
  51. 51.
    Zhao M, Ma M, Yang Y (2011) Efficient data gathering with mobile collectors and space-division multiple access technique in wireless sensor networks. IEEE Trans Comput 60(3):400–417MathSciNetCrossRefGoogle Scholar
  52. 52.
    Yang C, Yang Z, Ren K, Liu C (2011) Transmission reduction based on order compression of compound aggregate data over wireless sensor networks. In: 2011 6th international conference on pervasive computing and applications (ICPCA). IEEE, pp 335–342Google Scholar
  53. 53.
    Zhao M, Yang Y (2010) Data gathering in wireless sensor networks with multiple mobile collectors and sdma technique sensor networks. In: 2010 IEEE Wireless communications and networking conference (WCNC). IEEE, pp 1–6Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.GD Goenka UniversityGurgaonIndia
  2. 2.School of Information, Communication and TechnologyGuru Gobind Singh Indraprastha UniversityNew DelhiIndia

Personalised recommendations