Advertisement

Plant Biology-Inspired Genetic Algorithm: Superior Efficiency to Firefly Optimizer

  • Neeraj Gupta
  • Mahdi KhosravyEmail author
  • Om Prakash Mahela
  • Nilesh Patel
Chapter
Part of the Springer Tracts in Nature-Inspired Computing book series (STNIC)

Abstract

This chapter analytically compares the efficiency of the recent plant biology-inspired genetic algorithm (PBGA) and the firefly algorithm (FA) optimizer. The comparison is over a range of well-known critical benchmark test functions. Through statistical comparisons over the benchmark functions, the efficiency of PBGA has been evaluated versus FA as a well-known accurate meta-heuristic optimizer. Through a considerable number of Monte Carlo runs of searching for a solution by both optimizers, their performance has been statistically measured by several valid indices. In addition, the convergence curves give a visual comparison of both techniques where the stability, speed, and accuracy dominance of PBGA is clearly observable. However, in the case of benchmark function with smooth nature-like Rosenbrock, Sphere, and Dixon and Price, FA has better performance on average, while PBGA performance is still comparable to FA.

Notes

Acknowledgements

Our very special acknowledgment goes to Professor Ishwar Sethi in the Department of Computer Science and Engineering, Oakland University, Rochester, Michigan, the USA, for his very worthwhile advices during this work.

References

  1. 1.
    Dasgupta D, Michalewicz Z (2013) Evolutionary algorithms in engineering applications. Springer Science & Business MediaGoogle Scholar
  2. 2.
    Fogel DB (2006) Foundations of evolutionary computation. In: Modeling and simulation for military applications. International Society for Optics and Photonics, vol 6228, p 622–801Google Scholar
  3. 3.
    Binitha S, Sathya SS et al (2012) A survey of bio inspired optimization algorithms. Int J Soft Comput Eng 2(2):137–151Google Scholar
  4. 4.
    Crainic TG, Toulouse M (2003) Parallel strategies for meta-heuristics. In: Handbook of metaheuristics. Springer, pp 475–513Google Scholar
  5. 5.
    Tomassini M (1995) A survey of genetic algorithms. In: Annual reviews of computational physics III. World Scientific, pp 87–118Google Scholar
  6. 6.
    Gupta N, Patel N, Tiwari BN, Khosravy M (2018) Genetic algorithm based on enhanced selection and log-scaled mutation technique. In: Proceedings of the future technologies conference. Springer, pp 730–748Google Scholar
  7. 7.
    Singh G, Gupta N, Khosravy M (2015) New crossover operators for real coded genetic algorithm (RCGA). In: 2015 international conference on intelligent informatics and biomedical sciences (ICIIBMS). IEEE, pp 135–140Google Scholar
  8. 8.
    Moscato P, Cotta C, Mendes A (2004) Memetic algorithms. In: New optimization techniques in engineering. Springer, pp 53–85Google Scholar
  9. 9.
    Dorigo M, Birattari M (2010) Ant colony optimization. SpringerGoogle Scholar
  10. 10.
    Moraes CA, De Oliveira EJ, Khosravy M, Oliveira LW, Honório LM, Pinto MF (2020) A hybrid bat-inspired algorithm for power transmission expansion planning on a practical brazilian network. In: Applied nature-inspired computing: algorithms and case studies (pp 71–95). Springer, SingaporeGoogle Scholar
  11. 11.
    Jin X, Reynolds RG (1999) Using knowledge-based evolutionary computation to solve nonlinear constraint optimization problems: a cultural algorithm approach. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 3. IEEE, pp 1672–1678Google Scholar
  12. 12.
    Pelikan M, Goldberg DE, Lobo FG (2002) A survey of optimization by building and using probabilistic models. Comput Optim Appl 21(1):5–20MathSciNetCrossRefGoogle Scholar
  13. 13.
    Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter optimization problems. Evol Comput 4(1):1–32CrossRefGoogle Scholar
  14. 14.
    Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 3. IEEE, pp 1945–1950Google Scholar
  15. 15.
    Khosravy M, Gupta N, Patel N, Senjyu T, Duque CA (2020) Particle swarm optimization of morphological filters for electrocardiogram baseline drift estimation. In: Applied nature-inspired computing: algorithms and case studies, Springer, In PressGoogle Scholar
  16. 16.
    Buriol L, França PM, Moscato P (2004) A new memetic algorithm for the asymmetric traveling salesman problem. J Heuristics 10(5):483–506CrossRefGoogle Scholar
  17. 17.
    Gupta N, Shekhar R, Kalra PK (2014) Computationally efficient composite transmission expansion planning: a pareto optimal approach for technoeconomic solution. Int J Electr Power Energy Syst 63:917–926CrossRefGoogle Scholar
  18. 18.
    Authors (2012) Tepaccess. J 2(2):137–151Google Scholar
  19. 19.
    Tu Z, Lu Y (2004) A robust stochastic genetic algorithm (stga) for global numerical optimization. IEEE Trans Evol Comput 8(5):456–470CrossRefGoogle Scholar
  20. 20.
    Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim 38(2):129–154MathSciNetCrossRefGoogle Scholar
  21. 21.
    Montané FAT, Galvao RD (2006) A tabu search algorithm for the vehicle routing problem with simultaneous pick-up and delivery service. Comput Oper Res 33(3):595–619MathSciNetCrossRefGoogle Scholar
  22. 22.
    Oftadeh R, Mahjoob M, Shariatpanahi M (2010) A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search. Comput Math Appl 60(7):2087–2098CrossRefGoogle Scholar
  23. 23.
    Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713CrossRefGoogle Scholar
  24. 24.
    Meng X-B, Gao XZ, Liu Y, Zhang H (2015) A novel bat algorithm with habitat selection and doppler effect in echoes for optimization. Expert Syst Appl 42(17–18):6350–6364CrossRefGoogle Scholar
  25. 25.
    Shen W, Guo X, Wu C, Wu D (2011) Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm. Knowl-Based Syst 24(3):378–385CrossRefGoogle Scholar
  26. 26.
    Passino KM (2010) Bacterial foraging optimization. Int J Swarm Intell Res (IJSIR) 1(1):1–16MathSciNetCrossRefGoogle Scholar
  27. 27.
    Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295CrossRefGoogle Scholar
  28. 28.
    Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239CrossRefGoogle Scholar
  29. 29.
    Cheng R, Jin Y (2015) A social learning particle swarm optimization algorithm for scalable optimization. Inf Sci 291:43–60MathSciNetCrossRefGoogle Scholar
  30. 30.
    Dey N (2017) Advancements in applied metaheuristic computing. IGI GlobalGoogle Scholar
  31. 31.
    Gutierrez CE, Alsharif MR, Cuiwei H, Khosravy M, Villa R, Yamashita K, Miyagi H (2013) Uncover news dynamic by principal component analysis. Shanghai, China, ICIC Express Lett 7(4):1245–1250Google Scholar
  32. 32.
    Gutierrez CE, Alsharif PMR, Khosravy M, Yamashita PK, Miyagi PH, Villa R (2014) Main large data set features detection by a linear predictor model. In: AIP conference proceedings, vol 1618. AIP, pp 733–737Google Scholar
  33. 33.
    Gutierrez CE, Alsharif MR, Yamashita K, Khosravy M (2014) A tweets mining approach to detection of critical events characteristics using random forest. Int J Next-Gener Comput 5(2):167–176Google Scholar
  34. 34.
    Sedaaghi MH, Khosravi M (2003) Morphological ECG signal preprocessing with more efficient baseline drift removal. In: 7th. IASTED international conference, ASC, pp 205–209Google Scholar
  35. 35.
    Khosravi M, Sedaaghi MH (2004) Impulsive noise suppression of electrocardiogram signals with mediated morphological filters. In: 11th Iranian conference on biomedical engineering, ICBME, pp 207–212Google Scholar
  36. 36.
    Khosravy M, Asharif MR, Sedaaghi MH (2008) Medical image noise suppression using mediated morphology. IEICE Tech IEICE Rep 265–270Google Scholar
  37. 37.
    Khosravy M, Gupta N, Marina N, Sethi I, Asharifa M (2017) Perceptual adaptation of image based on chevreulmach bands visual phenomenonn. IEEE Signal Process Lett 24(5):594–598CrossRefGoogle Scholar
  38. 38.
    Khosravy M, Gupta N, Marina N, Sethi I, Asharif M (2017) Brain action inspired morphological image enhancement. In: Nature-inspired computing and optimization. Springer, Cham, pp 381–407CrossRefGoogle Scholar
  39. 39.
    Khosravy M, Alsharif MR, Guo B, Lin H, Yamashita K (2009) A robust and precise solution to permutation indeterminacy and complex scaling ambiguity in BSS-based blind MIMO-OFDM receiver. In: International conference on independent component analysis and signal separation, Springer, pp 670–677Google Scholar
  40. 40.
    Asharif F, Tamaki S, Alsharif MR, Khosravy M, Ryu H (2013) Performance improvement of constant modulus algorithm blind equalizer for 16 QAM modulation. Int J Innov Comput, Inf Control 7(4):1377–1384Google Scholar
  41. 41.
    Khosravy M, Alsharif MR, Yamashita K (2009) An efficient ICA based approach to multiuser detection in MIMO OFDM systems. In: Multi-carrier systems and solutions. Springer, pp 47–56Google Scholar
  42. 42.
    Khosravy M, Alsharif MR, Khosravi M, Yamashita K (2010) An optimum pre-filter for ICA based mulit-input multi-output OFDM system. In: 2010 2nd international conference on education technology and computer, vol 5. IEEE, pp V5–129Google Scholar
  43. 43.
    Khosravy M, Patel N, Gupta N, Sethi I (2019) Image quality assessment: a review to full reference indexes. In: Recent trends in communication, computing, and electronics. Springer, pp 279–288Google Scholar
  44. 44.
    Khosravy M, Asharif MR, Sedaaghi MH (2008) Morphological adult and fetal ECG preprocessing: employing mediated morphology. IEICE Tech Rep IEICE 107:363–369Google Scholar
  45. 45.
    Sedaaghi MH, Daj R, Khosravi M (2001) Mediated morphological filters. In: Proceedings 2001 international conference on image processing, vol 3. IEEE, pp 692–695Google Scholar
  46. 46.
    Khosravy M, Gupta N, Marina N, Sethi IK, Asharif MR (2017) Morphological filters: an inspiration from natural geometrical erosion and dilation. In: Nature-inspired computing and optimization. Springer, Cham, pp 349–379CrossRefGoogle Scholar
  47. 47.
    Khosravy M, Asharif MR, Yamashita K (2009) A pdf-matched short-term linear predictability approach to blind source separation. Int J Innov Comput Inf Control (IJICIC) 5(11):3677–3690Google Scholar
  48. 48.
    Khosravy M, Alsharif MR, Yamashita K (2009) A PDF-matched modification to stones measure of predictability for blind source separation. In: International Symposium on Neural Networks. Springer, Berlin, pp 219–222CrossRefGoogle Scholar
  49. 49.
    Khosravy M, Asharif MR, Yamashita K (2011) A theoretical discussion on the foundation of stones blind source separation. Signal, Image Video Process 5(3):379–388CrossRefGoogle Scholar
  50. 50.
    Khosravy M, Asharif M, Yamashita K (2008) A probabilistic short-length linear predictability approach to blind source separation. In: 23rd international technical conference on circuits/systems, computers and communications (ITC-CSCC 2008). Yamaguchi, Japan, pp 381–384Google Scholar
  51. 51.
    Khosravy M, Alsharif MR, Yamashita K (2009) A pdf-matched modification to stones measure of predictability for blind source separation. In: International symposium on neural networks, Springer, pp 219–228Google Scholar
  52. 52.
    Khosravy M, Gupta M, Marina M, Asharif MR, Asharif F, Sethi I (2015) Blind components processing a novel approach to array signal processing: a research orientation. In: 2015 international conference on intelligent informatics and biomedical sciences, ICIIBMS, pp 20–26Google Scholar
  53. 53.
    Khosravy M, Punkoska N, Asharif F, Asharif MR (2014) Acoustic OFDM data embedding by reversible walsh-hadamard transform. In: AIP conference proceedings. AIP vol 1618, pp. 720–723Google Scholar
  54. 54.
    Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation, arXiv preprint arXiv:1003.1409
  55. 55.
    Dey N, Samanta S, Chakraborty S, Das A, Chaudhuri SS, Suri JS (2014) Firefly algorithm for optimization of scaling factors during embedding of manifold medical information: an application in ophthalmology imaging. J Med Imaging Health Inform 4(3):384–394CrossRefGoogle Scholar
  56. 56.
    Kumar R, Rajan A, Talukdar FA, Dey N, Santhi V, Balas VE (2017) Optimization of 5.5-ghz cmos lna parameters using firefly algorithm. Neural Comput Appl 28(12):3765–3779CrossRefGoogle Scholar
  57. 57.
    Jagatheesan K, Anand B, Samanta S, Dey N, Ashour AS, Balas VE (2017) Design of a proportional-integral-derivative controller for an automatic generation control of multi-area power thermal systems using firefly algorithm. IEEE/CAA J Autom SinGoogle Scholar
  58. 58.
    Kumar R, Talukdar FA, Dey N, Balas VE (2016) Quality factor optimization of spiral inductor using firefly algorithm and its application in amplifier. Int J Adv Intell ParadGoogle Scholar
  59. 59.
    Chakraborty S, Dey N, Samanta S, Ashour AS, Balas VE (2016) Firefly algorithm for optimized nonrigid demons registration. In: Bio-inspired computation and applications in image processing, Elsevier, pp 221–237Google Scholar
  60. 60.
    Samanta S, Mukherjee A, Ashour AS, Dey N, Tavares JMR, Abdessalem Karâa WB, Taiar R, Azar AT, Hassanien AE (2018) Log transform based optimal image enhancement using firefly algorithm for autonomous mini unmanned aerial vehicle: an application of aerial photography. Int J Image Graph 18(04):1850019CrossRefGoogle Scholar
  61. 61.
    Fister I, Fister J, Yang XS, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46CrossRefGoogle Scholar
  62. 62.
    Gupta N, Khosravy M, Patel N, Sethi I (2018) Evolutionary optimization based on biological evolution in plants. Procedia Comput Sci 126:146–155CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Neeraj Gupta
    • 1
  • Mahdi Khosravy
    • 2
    • 3
    Email author
  • Om Prakash Mahela
    • 4
  • Nilesh Patel
    • 1
  1. 1.Department of Computer Science and EngineeringOakland UniversityRochester, OaklandUSA
  2. 2.Electrical Engineering DepartmentFederal University of Juiz de ForaJuiz de ForaBrazil
  3. 3.Electrical Engineering DepartmentUniversity of the RyukyusNishiharaJapan
  4. 4.Rajasthan Rajya Vdhyut Prasaran Nigam Ltd.JodhpurIndia

Personalised recommendations