Advertisement

Flow Analysis of Reiner–Rivlin Fluid Between Two Stretchable Rotating Disks

  • Abhijit DasEmail author
  • Suman Sarkar
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Explicit, analytical solutions are obtained for the flow of a non-Newtonian Reiner–Rivlin fluid between two coaxially rotating and radially stretching disks. The rotor–stator case and the cases of co- and counter-rotation are discussed elucidating the effects of various parameters of interest, such as stretching parameters, non-Newtonian parameter and Reynolds number.

Keywords

Stretchable rotating disks Reiner–Rivlin fluid HAM Reynolds number 

References

  1. 1.
    Kármán ThV (1921) Über laminare und turbulente Reibung. ZAMM-J Appl Math Mech 1(4):233–252CrossRefGoogle Scholar
  2. 2.
    Bödewadt UT (1940) Die drehströmung über festem grunde. ZAMM-J Appl Math Mech 20(5):241–253CrossRefGoogle Scholar
  3. 3.
    Zandbergen PJ, Dijkstra D (1987) Von Kármán swirling flows. Annu Rev Fluid Mech 19(1):465–491CrossRefGoogle Scholar
  4. 4.
    Gregory N, Stuart JT, Walker WS (1955) On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk. Philos Trans R Soc Lond Ser A, Math Phys Sci, 248:155–199MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lingwood RJ (1996) An experimental study of absolute instability of the rotating-disk boundary-layer flow. J Fluid Mech 314:373–405CrossRefGoogle Scholar
  6. 6.
    Childs PR (2010) Rotating flow. ElsevierGoogle Scholar
  7. 7.
    Batchelor GK (1951) Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. Q J Mech Appl Math 4(1):29–41MathSciNetCrossRefGoogle Scholar
  8. 8.
    Stewartson K (1953) On the flow between two rotating coaxial disks. Math Proc Camb Philos Soc 49(2):333–341MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lance GN, Rogers MH (1962) The axially symmetric flow of a viscous fluid between two infinite rotating disk. Proc R Soc Lond Ser A Math Phys Sci, 266:109–121Google Scholar
  10. 10.
    Holodniok M, Kubicek M, Hlavacek V (1977) Computation of the flow between two rotating coaxial disks. J Fluid Mech 81(4):689–699MathSciNetCrossRefGoogle Scholar
  11. 11.
    Soong CY, Wu CC, Liu TP, Liu TP (2003) Flow structure between two co-axial disks rotating independently. Exp Therm Fluid Sci 27(3):295–311CrossRefGoogle Scholar
  12. 12.
    Turkyilmazoglu M (2006) Flow and heat simultaneously induced by two stretchable rotating disks. Phys Fluids 28(4):043601CrossRefGoogle Scholar
  13. 13.
    Fang T (2007) Flow over a stretchable disk. Phys Fluids 19(12):128105CrossRefGoogle Scholar
  14. 14.
    Reiner M (1945) A mathematical theory of dilatancy. Am J Math 67(3):350–362MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rivlin R.S (1948) The hydrodynamics of non-Newtonian fluids. I. Proc R Soc Lond A, 193(1033):260–281Google Scholar
  16. 16.
    Liao S.J (1992) The proposed homotopy analysis technique for the solution of nonlinear problems. Diss. PhD Thesis, Shanghai Jiao Tong UniversityGoogle Scholar
  17. 17.
    Xu H, Liao SJ (2006) Series solutions of unsteady MHD flows above a rotating disk. Mecc 41(6):599–609MathSciNetCrossRefGoogle Scholar
  18. 18.
    Das A, Sahoo B (2018) Flow of a Reiner-Rivlin fluid between two infinite coaxial rotating disks. Math Methods Appl Sci 41(14):5602–5618MathSciNetCrossRefGoogle Scholar
  19. 19.
    Das A, Sahoo B (2018) Flow and heat transfer of a second grade fluid between two stretchable rotating disks. Bull Braz Math Soc 49(3):531–547MathSciNetCrossRefGoogle Scholar
  20. 20.
    Das A, Bhuyan SK (2018) Application of HAM to the von Kármán swirling flow with heat transfer over a rough rotating disk. Int J Appl Comput Math 4(5):113CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Pandit Deendayal Petroleum UniversityRaisan, GandhinagarIndia
  2. 2.NIT RourkelaRourkelaIndia

Personalised recommendations