Advertisement

Recent Advances in Chitosan-Based Systems for Delivery of Anticancer Drugs

  • Mehmet Polat
  • Hurriyet PolatEmail author
Chapter
  • 33 Downloads

Abstract

Problems in transporting drug molecules to tumor sites in required dose or constitution lead to low efficacy and significant side effects. Shielding the drug molecules in micelles, liposomes, or nanoparticles is a major line of investigation to improve chemotherapeutic treatment. Though compatibility for proper envelopment of the drug and timely release at the tumor site are required of such a carrier, protecting its own physicochemical and morphological integrity during transport is another precondition.

Because of its superior polymerization capability, biocompatibility, pH dependence, and charging characteristics, chitosan has been in the forefront of potential drug carriers. Numerous synthesis routes for chitosan-based nanocarriers have been suggested to the extent that a search of the literature published since 2000 with the keywords “novel + nano + chitosan” in the title results in 527 articles, indicating the bewildering quality and quantity of the new information.

This review was carried out not only to peruse this large amount of work on chitosan-based anticancer drug delivery but also to extract manageable patterns from numerous synthesis routes. The main conclusion is that the synthesis methods suggested in literature can be combined into two main routes, and the degree of hydrophobicity of the drug determines which route should be followed.

Keywords

Anticancer Drug carrier(s) Chitosan Nanoparticle(s) 

References

  1. Afkham A, Aghebati-Maleki L, Siahmansouric H, Sadreddini S, Ahmadia M, Dolati S, Jadidi-Niaragh F, Yousefi M, Siahmansouri H, Afkham NM, Akbarzadeh P, Yousefib M et al (2018) Chitosan (CMD)-mediated co-delivery of SN38 and Snail-specific siRNA as a useful anticancer approach against prostate cancer. Pharmacol Rep 70:418–425PubMedCrossRefGoogle Scholar
  2. Ahmad FJ, Islam F, Alam S, Mustafa G, Bhatnagar A, Khan ZI et al (2012) Development and evaluation of thymoquinone encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmaco scintigraphic study. Int J Nanomed 7:5705–5718Google Scholar
  3. Ahsan SM, Thomas M, Reddy K, Sooraparaju SG, Asthana A, Bhatnagar I et al (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Boil Macromol 110:97–109CrossRefGoogle Scholar
  4. Alam S, Khan ZI, Mustafa G, Kumar M et al (2012) Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study. Int J Nanomedicine 7:5705–5718PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ali A, Ahmed S et al (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286PubMedCrossRefPubMedCentralGoogle Scholar
  6. Andriani Y, Grasianto C, Siswanta D, Mudasir M (2015) Retracted-glutaraldehyde-crosslinked chitosan-pectin nanoparticles as a potential carrier for curcumin delivery and its in vitro release study. Int J Drug Deliv 7:167–173Google Scholar
  7. Anto SM, Kannan C, Kumar KS, Kumar SV, Suganeshwari M et al (2011) Formulation of 5-fluorouracil loaded chitosan nanoparticles by emulsion droplet coalescence method for cancer therapy. Int J Pharm Biol Arch 2:926–931Google Scholar
  8. Aydin RST, Pulat M et al (2012) 5-Fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. J Nanomater 2012:10Google Scholar
  9. Bagheri M, Younesi H, Hajati S et al (2015) Application of chitosan-citric acid nanoparticles for removal of chromium (VI). Int J Biol Macromol 80:431–444PubMedCrossRefGoogle Scholar
  10. Ballard N, Aguirre M, Simula A, Leiza JR, Van Es S, Asua JM et al (2017) Nitroxide mediated suspension polymerization of methacrylic monomers. Chem Eng J 316:655–662CrossRefGoogle Scholar
  11. Banerjee T, Mitra S, Singh AK et al (2002) Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm 243:93–105PubMedCrossRefGoogle Scholar
  12. Batrakova EV, Kabanov AV (2008) Pluronic block copolymers evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130(2):98–106.  https://doi.org/10.1016/j.jconrel.2008.04.013 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bhattarai N, Ramay HR, Chou SH et al (2006) Chitosan and lactic acid-grafted chitosan nanoparticles as carriers for prolonged drug delivery. Int J Nanomed 1:181–187CrossRefGoogle Scholar
  14. Bianco A, Kostarelos K, Prato M (2008) Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opin Drug Deliv 5:331–342PubMedCrossRefGoogle Scholar
  15. Bilati U, Allemann E, Doelker E (2005) Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24:67–75PubMedCrossRefGoogle Scholar
  16. Cao Y, Xu Y, Zhang J, Yang D, Liu J et al (2015) Well-controlled atom transfer radical polymerizations of acrylates using recyclable niobium complex nanoparticle as photocatalyst under visible light irradiation. Polymer 61:198–203CrossRefGoogle Scholar
  17. Casettari L, Castagnino E, Vllasaliu D, Stolnik S, Howdle S, Illum L et al (2012) PEGylated chitosan derivatives: synthesis, characterizations and pharmaceutical applications. Prog Polym Sci 37(5):659–685CrossRefGoogle Scholar
  18. Cesano F, Fenoglio G, Nisticò R, Carlos L et al (2015) One-step synthesis of magnetic chitosan polymer composite films. Appl Surf Sci 345:175–181CrossRefGoogle Scholar
  19. Chabner BA, Lango DL (2001) Topoisomerase II inhibitors: the epipo- dophyllotoxins, m–AMSA and the ellipticine derivatives. In: Cancer chemo-theraphy and biotherapy: principles and practice. Lippoincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  20. Chang K, Liang B et al (1997) Heterogeneous N-deacetylation of chitin in alkaline solution. Carbohydr Res 303(3):327–332CrossRefGoogle Scholar
  21. Chen J, Ma YD, Wang LC, Han WY et al (2019) Preparation of chitosan/SiO2-loaded graphene composite beads for efficient removal of bilirubin. Carbon 143:352–361CrossRefGoogle Scholar
  22. Cheung CSF, Chung KKW, Lui JC, Lau CP, Hon PM et al (2007) Leachi- anone A as a potential anticancer drug by induction of apoptosis in human hepatoma HepG2 cells. Cancer Lett 253(2):224–235PubMedCrossRefGoogle Scholar
  23. Chi HJK, Amalini CJ, Karen SB, Marcus PG, Lynnette RF et al (2013) Anticancer activities of Ganoderma lucidum: active ingredients and pathways. Funct Food Health Dis 3(2):48–65CrossRefGoogle Scholar
  24. Cihan E, Polat M, Polat H et al (2017) Designing of spherical chitosan nano-shells with micellar cores for solvation and safeguarded delivery of strongly lipophilic drugs. Colloids Surf A Physicochem Eng Asp 529:815–823CrossRefGoogle Scholar
  25. Cragg GM, Schepartz SA, Suffness M, Grever MG et al (1993) The taxol supply crisis. new NCI policies for handling the large scale production of novel nat-ural product anticancer and anti-HIV agents. J Nat Prod 56(10):1657–1668PubMedCrossRefGoogle Scholar
  26. De Campos AM, Sanchez A, Alonso MJ et al (2001) Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cylosporin A. Int J Pharm 224:159–168PubMedCrossRefGoogle Scholar
  27. Deshayes S et al (2013) Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J Am Chem Soc 135:15501–15507PubMedCrossRefGoogle Scholar
  28. Dong Y et al (2014) Lipid-like nanomaterials for simultaneous gene expression and silencing in vivo. Adv Healthc Mater 3:1392–1397PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dong P, Rakesh KP, Manukumar HM, Mohammed YHE, Karthik CS, Sumathi S, Mallud P, Qin HL (2019) Innovativenano-carriersinanticancerdrugdelivery-acomprehensive review. Bioorg Chem 85:325–336PubMedCrossRefGoogle Scholar
  30. Dreis S et al (2007) Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int J Pharm 341:207–214PubMedCrossRefGoogle Scholar
  31. Elgadir MA, Adam A, Uddin MS, Sarker MZI, Ferdosh S, Chowdhury AJK et al (2015) Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J Food Drug Anal 23(4):619–629PubMedCrossRefPubMedCentralGoogle Scholar
  32. El-Shabouri MH et al (2002) Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm 249:101–108PubMedCrossRefGoogle Scholar
  33. Elzoghby AO, Samy WM, Elgindy NA (2012) Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157:168–182PubMedCrossRefGoogle Scholar
  34. Ensign LM, Cone R, Hanes J et al (2012) Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64(6):557–557PubMedCrossRefGoogle Scholar
  35. Fernandez-Urrusuno R, Cavlo P, Remunan LC et al (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 16:1576–1581PubMedCrossRefGoogle Scholar
  36. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:R1–R4CrossRefGoogle Scholar
  37. Gao JJ, Nakamura N, Min BS, Hirakawa A, Zuo F et al (2004) Quantitative determination of bitter principles in specimens of Ganoderma lucidum using high-performance liquid chromatography and its application to the evaluation of Ganoderma products. Chem Pharm Bull 52(6):688–695PubMedCrossRefGoogle Scholar
  38. Gao X, He C, Xiao C, Zhuang X, Chen X (2013) Biodegradable pH-responsive polyacrylic acid derivative hydrogels with tunable swelling behavior for oral delivery of insulin. Polymer 54:1786–1793CrossRefGoogle Scholar
  39. Gao P, Xia G, Bao Z, Feng C, Cheng X, Kong M, Liu Y, Chen X et al (2016) Chitosan based nanoparticles as protein carriers for efficient oral antigen delivery. Int J Biol Macromol 91:716–723CrossRefGoogle Scholar
  40. Garg T, Rath G, Goyal AK et al (2016) Inhalable chitosan nanoparticles as antitubercular drug carriers for an effective treatment of tuberculosis. Artif Cells Nanomed Biotechnol 44:997–1001PubMedCrossRefGoogle Scholar
  41. Gaucher G, Dufresne MH, Sant VP, Kang N, Leroux JC, Maysinger D et al (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109:169–188PubMedCrossRefGoogle Scholar
  42. George M, Abraham TE et al (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan-a review. J Control Release 114(1):1–14PubMedPubMedCentralCrossRefGoogle Scholar
  43. George A, Shah PA, Shrivastav PS (2019) Guar gum: versatile natural polymer for drug delivery applications. Eur Polym J 112:722–735CrossRefGoogle Scholar
  44. Ghosh R, Goswami U, Ghosh SS, Paul A, Chattopadhyay A (2015) Synergistic anticancer activity of fluorescent copper nanoclusters and cisplatin delivered through a hydrogel nanocarrier. ACS Appl Mater Interfaces 7:209–222PubMedCrossRefGoogle Scholar
  45. Gilbreth RN et al (2016) Lipid- and polyion complex-based micelles as agonist platforms for TNFR superfamily receptors. J Control Release 234:104–114PubMedCrossRefGoogle Scholar
  46. Gorochovceva N, Makuska R et al (2004) Synthesis and study of water-soluble chitosan-0-poly (ethylene glycol) graft copolymers. Eur Polym J 40:685–691CrossRefGoogle Scholar
  47. Grenha A (2012) Chitosan nanoparticles: a survey of preparation methods. J Drug Target 20(4):291–300PubMedCrossRefGoogle Scholar
  48. Gupta NK, Nahata A, Dixit VK et al (2010) Development of spectrofluorimetric method for the determination of curcumin. Asian J Trad Med 5(1):12–18. https://www.cancer.gov Google Scholar
  49. Hande KR et al (1998) Etopside: four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34(10):1514–1521PubMedCrossRefGoogle Scholar
  50. Hartwell JL et al (1971) Plants used against cancer – a survey. Lloydia 34(4):204–255PubMedGoogle Scholar
  51. Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60:76–885CrossRefGoogle Scholar
  52. Hojjati B, Charpentier PA et al (2008) Synthesis and kinetics of graft polymerization of methyl methacrylate from the RAFT coordinated surface of nano-TiO2. J Polym Sci A 46(12):3926–3937CrossRefGoogle Scholar
  53. Honore S, Kamath K, Braguer D, Horwitz SB et al (2004) Synergistic suppression of microtubule dynamics by discodermolide and paclitaxel in non-small cell lung carcinoma cells. Cancer Res 64:4957–4964PubMedCrossRefGoogle Scholar
  54. Hosseinzadeh H, Pashaei S, Ramin S, Hosseinzadeh S, Khodaparast Z, Saadat Y et al (2018) Preparation of novel multi-walled carbon nanotubes nanocomposite adsorbent via RAFT technique for the adsorption of toxic copper ions. Sci Total Environ 640:303–314PubMedCrossRefGoogle Scholar
  55. Hosseinzadeh H, Pashaei S, Ramin S, Hosseinzadeh S, Khodaparast Z, Saadat Y et al (2019) Synthesis of stimuli-responsive chitosan nanocomposites via RAFT copolymerization for doxorubicin delivery. Int J Biol Macromol 121:677–685PubMedCrossRefGoogle Scholar
  56. Hu Y, Jiang X, Ding Y, Ge H, Yuan Y, Yang C (2002) Synthesis and characterization of chitosan poly (acrylic acid) nanoparticles. Biomaterials 23:3193–3201PubMedCrossRefGoogle Scholar
  57. Hua D, Tang J, Cheng J, Deng W, Zhu X et al (2008) A novel method of grafting modification of chitosan via REFT polymerization agent. Carbonhydr Polym 73:98–104CrossRefGoogle Scholar
  58. Hunter AC, Moghimi SM, Elsom J, Wibroe PP et al (2012) Polymeric particulate technologies for oral drug delivery and targeting: a pathophysiological perspective. Nanomed Nanotechnol 8:5–20CrossRefGoogle Scholar
  59. Jesus S, Soares E, Borchard G, Borges O et al (2017) Poly-e-caprolactone/chitosan nanoparticles provide strong adjuvant effect for hepatitis B antigen. Nanomedicine 12:2335–2348PubMedCrossRefGoogle Scholar
  60. Jiang J, Pan X, Cao J, Jiang J, Hua D, Zhu X et al (2012) Synthesis and property of chitosan graft copolymer by RAFT polymerization with tosylic acid–chitosan complex. Int J Biol Macromol 50(3):586–590PubMedCrossRefGoogle Scholar
  61. Jiang L, Duan H, Ji X et al (2018) Application of a simple desolvation method to increase the formation yield, physical stability and hydrophobic drug encapsulation capacity of chitosan-based nanoparticles. Int J Pharm 545:117–127PubMedCrossRefGoogle Scholar
  62. Jin X et al (2016) Efficient intravesical therapy of bladder cancer with cationic doxorubicin nanoassemblies. Int J Nanomed 11:4535–4544CrossRefGoogle Scholar
  63. Kabanov AV, Batrakova EV, Alakhov VY et al (2002) Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82:189–212PubMedCrossRefGoogle Scholar
  64. Kafshgari MH, Khorram M, Mansouri M et al (2012) Preparation of alginate and chitosan nanoparticles using a new reverse micellar system. Iran Polym J 21:99–107CrossRefGoogle Scholar
  65. Kairdolf BA et al (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem 6:143–162CrossRefGoogle Scholar
  66. Kamaraj S, Palanisamy UM, Mohamed MSBK, Gangasalam A, Maria GA, Kandasamy R et al (2018) Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier. Eur J Pharm Sci 116:48–60PubMedCrossRefGoogle Scholar
  67. Karimi MH, Mahdaviniab GR, Massoumia B et al (2018) pH-controlled sunitinib anticancer release from magnetic chitosan nanoparticles crosslinked with κ-carrageenan. Mater Sci Eng C 91:705–714CrossRefGoogle Scholar
  68. Kaur G, Mahajan M, Bassi P (2013) Derivatized polysaccharides: preparation, characterization, and application as bioadhesive polymer for drug delivery. Int J Polym Mater Polym Biomater 62:475–481CrossRefGoogle Scholar
  69. Kavimani S, Manisenthilkumar KT, Ilango R, Krishnamoorthy G et al (1999) Effect of the methanolic extract of Glinus lotoides on Dalton’s ascitic lym- phoma. Biol Pharm Bull 22(11):1251–1252PubMedCrossRefGoogle Scholar
  70. Kawashima Y, Handa T, Takenaka H, Lin SY, Ando Y et al (1985a) Novel method for the preparation of controlled-release theophylline granules coated with a polyelectrolyte complex of sodium polyphosphate-chitosan. J Pharmacol Sci 74:264–268CrossRefGoogle Scholar
  71. Kawashima Y, Handa T, Takenaka H, Lin SY, Ando Y et al (1985b) The effect of thickness and hardness of the coating film on the drug release of theophylline granules. Chem Pharm Bull 33:2469–2474PubMedCrossRefGoogle Scholar
  72. Kloster GA, Meiorin C, Marcovich NE, Mosiewicki MA, Muraca DR, Pirota K et al (2015) Magnetic characterization of chitosan-magnetite nanocomposite films. Eur Polym J 72:202–211CrossRefGoogle Scholar
  73. Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzym Microb Technol 35(2–3):126–139CrossRefGoogle Scholar
  74. Kumar MN, Kumar N, Domb AJ (2000) Pharmaceutical polymeric controlled drug delivery systems. Adv Polymer Sci 160:45–117CrossRefGoogle Scholar
  75. Kumar A, Sridevi K, Kumar NV, Nanduri S, Rajagopal S et al (2002) Hypericin in cancer treatment: more light on the way. Int J Biochem Cell Biol 34(3):221–241CrossRefGoogle Scholar
  76. Kumari P et al (2017) Cholesterol-conjugated poly (D, L-lactide)-based micelles as a nanocarrier system for effective delivery of curcumin in cancer therapy. Drug Deliv 24:209–223PubMedCrossRefGoogle Scholar
  77. Kurita K et al (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226PubMedCrossRefGoogle Scholar
  78. Kwak CS, Moon SC, Lee MS et al (2006) Antioxidant, antimutagenic, and anti-tumor effects of pine needles (Pinus densiflora). Nutr Cancer 56(2):162–171PubMedCrossRefGoogle Scholar
  79. Lanksy EP, Robert AN et al (2007) Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J Ethnopharmacol 109(2):177–206CrossRefGoogle Scholar
  80. Lanzalaco S, Scialdone O, Galia A, Fantin M, Matyjaszewski K, Isse AA, Gennaro A et al (2017) Atom transfer radical polymerization with different halides (F, Cl, Br, and I): is the process “living” in the presence of fluorinated initiators? Macromolecules 50(2):192–202CrossRefGoogle Scholar
  81. Li P, Wang Y, Zeng F et al (2011) Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells. Carbohydr Res 346:801–806PubMedCrossRefGoogle Scholar
  82. Li Z et al (2015) Quantum dots loaded nanogels for low cytotoxicity, pH-sensitive fluorescence, cell imaging and drug delivery. Carbohydr Polym 121:477–485PubMedCrossRefGoogle Scholar
  83. Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408CrossRefGoogle Scholar
  84. Liu X, Fang Z, Zhang X, Zhang B, Hu Q et al (2009) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25(1):3–8PubMedCrossRefGoogle Scholar
  85. Liu SS, Yang SL, Paul CH et al (2018) Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J Pharm Sci 13:72–81PubMedCrossRefGoogle Scholar
  86. Luckachan GE, Pillai CKS et al (2006) Chitosan/oligo L-lactide graft copolymers: effect of hydrophobic side chains on the physico-chemical properties and biodegradability. Carbohydr Polym 64:254–266CrossRefGoogle Scholar
  87. Luque-Alcaraz AG, Lizardi-Mendoza J, Goycoolea FM et al (2016) Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier. RSC Adv 6:59250–59256CrossRefGoogle Scholar
  88. Maeda H, Nakamura H, Fang J et al (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79PubMedCrossRefGoogle Scholar
  89. Masuda Y, Shima G, Aiuchi T, Horie M, Hori K et al (2004) Involvement of tumor necrosis factor receptor-associated protein 1 (TRAP1) in apoptosis induced by beta-hydroxyisovalerylshikonin. J Biol Chem 279(41):42503–42515PubMedCrossRefGoogle Scholar
  90. Mazumder A, Cerella C, Diederich M (2018) Natural scaffolds in anticancer therapy and precision medicine. Biotechnol Adv 36:1563–1585PubMedCrossRefGoogle Scholar
  91. Mehrotra A, Nagarwal RC, Pandit JK et al (2010) Fabrication of lomustine loaded chitosan nanoparticles by spray drying andin vitrocytostatic activity on human lung cancer cell line L132. J Nanomed Nanotechnol 1:1–7CrossRefGoogle Scholar
  92. Meng J, Sturgis TF, Youan BC et al (2011) Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur J Pharm Sci 44:57–67PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ming SC, Wan S Jr, Jaw DM, Jin LJ, Hee LG et al (2003) Cytotoxic sesquiter-pene lactones the root of Saussurea lappa. J Nat Prod 66(9):1175–1180CrossRefGoogle Scholar
  94. Mitra S, Gaur U, Ghosh PC et al (2001) Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release 74:317–323PubMedCrossRefGoogle Scholar
  95. Mo R, Jiang T, Gu Z (2014) Recent progress in multidrug delivery to cancer cells by liposomes. Nanomedicine 9:1117–1120PubMedCrossRefGoogle Scholar
  96. Motwani SK, Chopra S, Talegaonkar S et al (2008) Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimization and in vitro characterization. Eur J Pharm Biopharm 68:513–525PubMedGoogle Scholar
  97. Moudi M, Go R, Yien CSK, Nazre M et al (2013) Vinca alkaloids. Int J Prev Med 4(11):1231–1235PubMedPubMedCentralGoogle Scholar
  98. Mourdikoudis S, Pallares RM, Thanh TNK et al (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10:12871–12934PubMedCrossRefGoogle Scholar
  99. Mu Y, Fu Y, Li J, Yu X, Li Y, Wang Y, Wu X, Zhang K, Kong M, Feng C, Chen X et al (2019a) Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug. Carbohyd Polym 203:10–18CrossRefGoogle Scholar
  100. Mu Y, Li J, Yu X, Li Y, Wang Y, Wu X, Zhang K, Kong M, Feng C, Chen X, Fu Y et al (2019b) Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug. Carbohydr Polym 203:10–18PubMedCrossRefGoogle Scholar
  101. Nahata A, Dixit VK et al (2011) Sphaeranthus indicus attenuates testosterone induced prostatic hypertrophy in albino rats. Phytother Res 25(12):1839–1848PubMedCrossRefGoogle Scholar
  102. Nahata A, Dixit VK et al (2012a) Ganoderma lucidum is an inhibitor of testosterone induced prostatic hyperplasia in rats. Andrologia 44(1):160–174PubMedCrossRefGoogle Scholar
  103. Nahata A, Dixit VK et al (2012b) Ameliorative effects of stinging nettle (Urtica dioica) on testosterone-induced prostatic hyperplasia in rats. Andrologia 44(1):396–409PubMedCrossRefGoogle Scholar
  104. Nahata A et al (2013) Ganoderma lucidum: a potent medicinal mushroom with numerous health benefits. Pharm Anal Acta 4:e159Google Scholar
  105. Nahata A (2017) Anticancer agents: a review of relevant information on important herbal drugs. Int J Clin Pharmacol Toxicol 6(2):250–255Google Scholar
  106. Nanjwade BK, Singh J, Parikh KA et al (2010) Preparation and evaluation of carboplatin biodegradable polymeric nanoparticles. Int J Pharm 385:176–180PubMedCrossRefGoogle Scholar
  107. Naskar S et al (2019) Chitosan-based nanoparticles: an overview of biomedical applications and its preparation. J Drug Deliv Sci Technol 49:66–81CrossRefGoogle Scholar
  108. Newman DJ, Cragg GM, Snader KM et al (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66(7):1022–1037PubMedCrossRefGoogle Scholar
  109. Ngan LTK, Wang SL, Hiep ÐM et al (2014) Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Res Chem Intermed 40:2165–2175CrossRefGoogle Scholar
  110. Nicolás P, Ferreira ML, Lassalle V, Saleta M, Troiani H, Zysler R et al (2013) Preparation of iron oxide nanoparticles stabilized with biomolecules: experimental and mechanistic issues. Acta Biomater 9(1):4754–4762PubMedCrossRefGoogle Scholar
  111. Niu XF, Tian F, Wang LZ, Li XM, Zhou G, Fana YB et al (2014) Synthesis and characterization of chitosan-graft-poly(lactic acid) copolymer. Chin J Polym Sci 32(1):43–50CrossRefGoogle Scholar
  112. Niwa T, Takeuchi H, Hino T, Kunou T, Kawashima Y et al (1993) Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D,L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method and the drug release behavior. J Contr Release 25:89–98CrossRefGoogle Scholar
  113. Ohya Y, Shiratani M, Kobayashi H, Ouchi T et al (1994) Release behaviour of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. Pure Appl Chem A 31:629–642Google Scholar
  114. Owen SC, Dianna CPY, Shoichet MS et al (2012) Polymeric micelle stability. Nano Today 7:53–65CrossRefGoogle Scholar
  115. Pan Y, Li Y, Zhao H et al (2002) Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 249:139–147PubMedCrossRefGoogle Scholar
  116. Park JH et al (2008) Polymeric nanomedicine for cancer therapy. Prog Polym Sci 33:113–137CrossRefGoogle Scholar
  117. Parsian M, Unsoy G, Mutlu P, Yalcin S, Tezcaner A, Gunduz U et al (2016) Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anticancer efficacy of the drug. Eur J Pharmacol 784:121–128PubMedCrossRefGoogle Scholar
  118. Parveen S, Sahoo SK (2008) Polymeric nanoparticles for cancer therapy. J Drug Target 16:108–123PubMedCrossRefGoogle Scholar
  119. Pawar D, Mangal S, Goswami R, Jaganathan KS et al (2013) Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. Eur J Pharm Biopharm 85:550–559PubMedCrossRefGoogle Scholar
  120. Pella MCG, Lima-Tenório MK, Tenório-Neto ET, Guilherme MR, Muniz EC, Rubira AF et al (2018) Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr Polym 196:233–245PubMedCrossRefGoogle Scholar
  121. Peppas N, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRefGoogle Scholar
  122. Petrov P, Yuan J, Yoncheva K, Müller AHE, Tsvetanov CB et al (2008) Wormlike morphology formation and stabilization of pluronic P123 micelles by solubilization of pentaerythritol tetraacrylate. J Phys Chem B 112:8879–8883PubMedCrossRefGoogle Scholar
  123. Pisha E, Chai H, Lee IS, Chagwedera TE, Farnsworth NR et al (1995) Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med 1(10):1046–1051PubMedCrossRefGoogle Scholar
  124. Plapied L, Duhem N, des Rieux A, Preat V et al (2011) Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci 16:228–237CrossRefGoogle Scholar
  125. Polat H, Kutluay G, Polat M (2019) Dilution induced disintegration of micellar drug carriers in the presence of extra and intra micellar species, Submitted to macromoleculesGoogle Scholar
  126. Prabaharan M et al (2015) Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol 72:1313–1322PubMedCrossRefGoogle Scholar
  127. Qi X et al (2015) Fabrication and characterization of a novel anticancer drug delivery system: salecan/poly (methacrylic acid) semi-interpenetrating polymer network hydrogel. ACS Biomater Sci Eng 1:1287–1299CrossRefGoogle Scholar
  128. Qi SS, Sun JH, Yu HH, Yu SQ (2017) Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy. Drug Deliv 24:1909–1926PubMedCrossRefGoogle Scholar
  129. Qiu Y, Zhu J, Wang J, Gong R, Zheng M, Huang F et al (2013) Self-assembled phytosterol-fructose-chitosan nanoparticles as a carrier of anticancer drug. Nanosci Nanotechnol 13:1–7CrossRefGoogle Scholar
  130. Radhakumary C, Nair PD, Mathew S, Reghunadhan Nair CP et al (2007) Synthesis, characterization, and properties of poly(vinyl acetate)- and poly(vinyl alcohol)-grafted chitosan. J Appl Polym Sci 104(3):1852–1859CrossRefGoogle Scholar
  131. Rahimi S, Khoee S, Ghandi M (2019) Preparation and characterization of rod-like chitosan-quinoline nanoparticles as pH-responsive nanocarriers for quercetin delivery. Int J Biol Macromol 128:279–289PubMedCrossRefGoogle Scholar
  132. Rampino A, Borgogna M, Blasi P, Bellich B, Cesàro A et al (2013) Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm 455:219–228PubMedCrossRefGoogle Scholar
  133. Rao KM, Kumar A, Suneetha M, Han SS et al (2018) pH and near-infrared active; chitosan-coated halloysite nanotubes loaded with curcumin-Au hybrid nanoparticles for cancer drug delivery. Int J Biol Macromol 112:119–125PubMedCrossRefGoogle Scholar
  134. Razmi M, Divsalar A, Saboury AA, Izadi Z, Haertlé T, Mansuri-Torshizi H et al (2013) Beta-casein and its complexes with chitosan as nanovehicles for delivery of a platinum anticancer drug. Colloids Surf B Biointerfaces 112:362–367PubMedCrossRefGoogle Scholar
  135. Reddy YD, Dhachinamoorthi D, Chandra SKB et al (2013) Formulation and in vitro evaluation of antineoplastic drug loaded nanoparticles as drug delivery system. Afr J Pharm Pharmacol 7:1592–1604CrossRefGoogle Scholar
  136. Renggli K, Nussbaumer MG, Urbani R, Pfohl T, Bruns N et al (2017) Biocatalytic atom transfer radical polymerization in a protein cage nanoreactor. Polym Chem 8:2133–2136CrossRefGoogle Scholar
  137. Roveimiab Z, Mahdavian AR, Biazar E, Saeed Heidari K et al (2012) Preparation of magnetic chitosan nanocomposite particles and their susceptibility for cellular separation applications. J Colloid Sci Biotechnol 1:82–88CrossRefGoogle Scholar
  138. Sachs-Barrable K, Lee SD, Wasan EK, Thomton SJ, Wasan KM et al (2007) Enhancing drug absorption using lipids: a case study presenting the development and pharmacological evaluation of a novel lipid-based oral amphotericin B formulation for the treatment of systemic fungal infections. Adv Drug Deliv Rev 60:692–701PubMedCrossRefGoogle Scholar
  139. Sajeesh S, Sharma CP (2005) Novel pH responsive polymethacrylic acid-chitosanpolyethylene glycol nanoparticles for oral peptide delivery. J Biomed Mater Res B Appl Biomater 76B:298–305CrossRefGoogle Scholar
  140. Sajeesh S, Sharma CP (2006) Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int J Pharm 325:147–154PubMedCrossRefGoogle Scholar
  141. Sasirekha R, Sheenab TS, Deepikac MS, Santhanama P, Townleye HE, Jeganathanb K, Kumara SD, Premkumard K et al (2019) Surface engineered Amphora subtropica frustules using chitosan as a drug delivery platform for anticancer therapy. Mat Sci Eng C-Mater 94:56–64CrossRefGoogle Scholar
  142. Schiff PB, Fant J, Horwitz SB et al (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277(5698):665–667PubMedCrossRefGoogle Scholar
  143. Senapati S, Mahanta AK, Kumar S, Maiti P et al (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 3:7PubMedPubMedCentralCrossRefGoogle Scholar
  144. Shanmuganathan R, Edison TNJI, Lewis Oscar F, Ponnuchamy K, Shanmugame S, Pugazhendhi A et al (2019) Chitosan nanopolymers: an overview of drug delivery against cancer. Int J Biol Macromol 130:727–736PubMedCrossRefGoogle Scholar
  145. Shariatinia Z et al (2018) Carboxymethyl chitosan: properties and biomedical applications. Int J Biol Macromol 120:1406–1419PubMedCrossRefGoogle Scholar
  146. Shariatinia Z, Mazloom-Jalali A et al (2019) Chitosan nanocomposite drug delivery systems designed for theifosfamide anticancer drug using molecular dynamics simulations. J Mol Liq 273:346–367CrossRefGoogle Scholar
  147. Shi M, Cai Q, Yao L, Mao Y, Ming Y et al (2006) Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol Int 30(3):221–226PubMedCrossRefGoogle Scholar
  148. Shi C et al (2014) Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles. Biomaterials 35:8711–8722PubMedCrossRefGoogle Scholar
  149. Shi Y, Lammers T, Storm G, Hennink WE et al (2017) Physico-Chemical stability and drug retention of polymeric micelles for tumor-targeted drug delivery. Macromol Biosci 7(1):11Google Scholar
  150. Shukla SK, Mishra AK, Arotiba OA, Mamba BB et al (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58PubMedCrossRefGoogle Scholar
  151. Singh B, Singh B (2019) Developing a drug delivery carrier from natural polysaccharide exudate gum by graft-copolymerization reaction using high energy radiations. Int J Biol Macromol 127:450–459PubMedCrossRefGoogle Scholar
  152. Singh SK, Shanmugavel M, Kampasi H, Singh R, Mondhe DM et al (2007) Chemically standardized isolates from cedrus deodara stem wood having anticancer activity. Planta Med 73(6):519–526PubMedCrossRefGoogle Scholar
  153. Sun L, Chen Y, Zhou Y, Guo D, Fan Y, Guo F, Zheng Y, Chen W (2017) Preparation of 5-fluorouracil-loaded chitosan nanoparticles and study of the sustained release in vitro and in vivo. Asian J Pharm Sci 12:418–423PubMedPubMedCentralCrossRefGoogle Scholar
  154. Sutar YB, Telvekar YN et al (2018) Chitosan based copolymer-drug conjugate and its protein targeted polyelectrolyte complex nanoparticles to enhance the efficiency and specificity of low potency anticancer agent. Mat Sci Eng C-Mater 92:393–406CrossRefGoogle Scholar
  155. Sutirman ZA, Sanagi MM, Abd Karim J, Abu Naim A, Wan Ibrahim WA et al (2018) New crosslinked-chitosan graft poly(N-vinyl-2-pyrrolidone) for the removal of Cu(II) ions from aqueous solutions. Int J Biol Macromol 107(Part A):891–897PubMedCrossRefGoogle Scholar
  156. Suzariana Samuri N, Hussein-Al-Ali SH, Kura A, Zobir Hussein M, Fakurazi S, Halim Shaari A et al (2016) Synthesis and characterization of magnetic chitosan-L-dopa nanocomposite. Curr Nanosci 12:487–492CrossRefGoogle Scholar
  157. Talelli P, Waddingham W, Ewas A, Rothwell JC, Ward NS et al (2008) The effect of age on task-related modulation of interhemispheric balance. Exp Brain Res 186:59–66PubMedCrossRefGoogle Scholar
  158. Tana H, Qina F, Chenb D, Hanb S, Luc W, Yaoa X et al (2013) Study of glycol chitosan-carboxymethyl -cyclodextrins as anticancer drugs carrier. Carbohydr Polym 93:679–685CrossRefGoogle Scholar
  159. Tang ZX, Qian JQ, Xi LE et al (2007) Preparation of chitosan nanoparticles as carrier for immobilized enzyme. Biotechnol 136:77–96Google Scholar
  160. Tian X, Song HS, Cho YM, Park B, Song YJ, Jang S, Kang SC (2017) Anticancer effect of Saussurea lappa extract via dual control of apoptosis and autophagy in prostate cancer cells. Medicine (Baltimore) 96:7606CrossRefGoogle Scholar
  161. Tikhonov VE, Stepnova EA, Babak VG, Yamskov IA, Palma-Guerrero J, Jansson HB, Lopez-Llorca LV, Salinas J, Gerasimenko DV, Avdienko ID, Varlamov VP et al (2006) Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl)succinoyl/-derivatives. Carbohydr Polym 64(1):66–72.  https://doi.org/10.1016/j.carbpol.2005.10.021 CrossRefGoogle Scholar
  162. Tokumitsu H, Ichikawa H, Fukumori Y et al (1999) Chitosan-gadopentetic acid complex nanoparticles for gadolinium neutron capture therapy of cancer: preparation by novel emulsion droplet coalescence technique and characterization. Pharm Res 16:1830–1835PubMedCrossRefGoogle Scholar
  163. Tomme SRV, Storm G, Hennink WE (2008) In situ gelling hydrogels for pharmaceutical and biomedical applications. Int J Pharm 355:1–18PubMedCrossRefGoogle Scholar
  164. Toti US, Aminabhavi TM (2004) Modified guar gum matrix tablet for controlled release of diltiazem hydrochloride. J Control Release 95:567–577PubMedCrossRefGoogle Scholar
  165. Verma M, Singh SK, Bhushan S, Sharma VK, Datt P et al (2008) In vitro cytotoxic potential of Polyalthia longifolia on human cancer cell lines and induction of apoptosis through mitochondrial-dependent pathway in HL-60 cells. Chem Biol Interact 171(1):45–56PubMedCrossRefGoogle Scholar
  166. Vyas R, Gupta N, Nimesh S (2016) Nanobiomaterials in cancer therapy. In: Chitosan nanoparticles for efficient and targeted delivery of anticancer drugs, 7th edn, Bucharest, pp 281–306Google Scholar
  167. Wang X, Yuan S, Wang J, Lin P, Liu G et al (2006) Anticancer activity of litchi fruit pericarp extract against human breast cancer in vitro and in vivo. Toxicol Appl Pharmacol 215(2):168–178PubMedCrossRefGoogle Scholar
  168. Wang LS, Wang CY, Yang CH, Hsieh CL, Huang KS et al (2015) Synthesis and anti-fungal effect of silver nanoparticles–chitosan composite particles. Int J Nanomed 10:2685–2696Google Scholar
  169. Wani MC, Taylor WHC, Coggon ME, Phail MC et al (1971) Plant antitumor agents. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93(9):2325–2327PubMedCrossRefGoogle Scholar
  170. Widodo N, Kaur K, Shrestha BG, Takagi Y, Ishii T et al (2007) Selective killing of cancer cells by leaf extract of Ashwagandha: identification of a tumor-inhibitory factor and the first molecular insights to its effect. Clin Cancer Res 13(7):2298–2306PubMedCrossRefGoogle Scholar
  171. Wu Y, Yang W, Wang C, Hu J, Fu S et al (2005) Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm 295:235–245PubMedCrossRefGoogle Scholar
  172. Xu Z, Graham K, Foote M, Liang F, Rizkallah R, Hurt M, Wang Y, Wu Y, Zhou Y et al (2013) 14-3-3 protein targets misfolded chaperone-associated proteins to aggresomes. J Cell Sci 126:4173–4186PubMedPubMedCentralCrossRefGoogle Scholar
  173. Xue MY, Steven HU, Lu YF, Zhang Y, Jiang XN, An S et al (2015a) Development of chitosan nanoparticles as drug delivery system for a prototype capsid inhibitor. Int J Pharm 495:771–782PubMedCrossRefGoogle Scholar
  174. Xue B et al (2015b) Intracellular degradable hydrogel cubes and spheres for anti-cancer drug delivery. ACS Appl Mater Interfaces 7:13633–13644PubMedCrossRefGoogle Scholar
  175. Yaguchi T, Sumimoto T, Kudo-Saito C, Tsukamoto N, Ueda R, Iwata Kajihara T, Nishio H, Kawamura N, Kawakami Y et al (2011) The mechanisms of cancer immune escape and development of overcoming strategies. Int J Hematol 93:294–300PubMedCrossRefGoogle Scholar
  176. Yamamoto K, Yoshida S, Kadokawa JI et al (2014) Surface-initiated atom transfer radical polymerization from chitin nanofiber macroinitiator film. Carbohydr Polym 112:119–124PubMedCrossRefGoogle Scholar
  177. Yang Y, Wang S, Wang Y et al (2014) Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol Adv 32:1301–1316PubMedCrossRefGoogle Scholar
  178. Yasmin H, Mazumdar T, Mittal P, Chakravarty AK et al (1998) Turmeric mediated activation of lymphocytes and induction of apoptosis of tumor cells. J Immunol Cell Biol 16(5):221–232Google Scholar
  179. Yuan Q, Shah J, Hein S, Misra RDK et al (2010) Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater 6:1140–1148PubMedCrossRefGoogle Scholar
  180. Zhang E, Xing R, Liu S, Li K, Qin Y, Yu H, Li P et al (2019) Vascular targeted chitosan-derived nanoparticles as docetaxel carriers for gastric cancer therapy. Int J Biol Macromol 126:662–672PubMedCrossRefGoogle Scholar
  181. Zhao D et al (2010) Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomed 5:669–677Google Scholar
  182. Zhao LM, shi LE, Zhang ZL, Chen JM, Shi DD, Yang J, Tang ZX et al (2011a) Preparation and application of chitosan nanoparticles and nanofibers. Braz J Chem Eng 28:353–362CrossRefGoogle Scholar
  183. Zhao K, Shi XM, Zhao Y, Wei HX, Sun QS, Huang TT et al (2011b) Preparation and immunological effectiveness of a swine influenza DNA vaccine encapsulated in chitosan nanoparticles. Vaccine 29:8549–8556PubMedCrossRefGoogle Scholar
  184. Zhou W, Li C, Wang Z, Zhang W, Liu J (2016) Factors affecting the stability of drug-loaded polymeric micelles and strategies for improvement. J Nanopart Res 18:275–293CrossRefGoogle Scholar
  185. Zhu Y, Liao L (2015) Applications of nanoparticles for anticancer drug delivery: a review. J Nanosci Nanotechnol 15:4753–4773PubMedCrossRefGoogle Scholar
  186. Zrazhevskiy P, Sena M, Gao X (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39:4326–4354PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIzmir Institute of TechnologyUrla IzmirTurkey
  2. 2.Department of ChemistryIzmir Institute of TechnologyUrla IzmirTurkey

Personalised recommendations