Advertisement

Chitosan-Based Hydrogels for Drug Delivery

  • Michelly Cristina Galdioli Pellá
  • Hugo Henrique Carline de Lima
  • Andrelson Wellington Rinaldi
  • André Ricardo Fajardo
  • Ernandes Taveira Tenório-Neto
  • Marcos Rogério Guilherme
  • Adley Forti Rubira
  • Michele Karoline Lima-Tenório
Chapter
  • 40 Downloads

Abstract

The advances in the field of biomaterials have led to several studies on alternative biocompatible devices and to their development focusing on their properties, benefits, limitations, and utilization of alternative resources. Due to their advantages like biocompatibility, biodegradability, and low costs, polysaccharides have been widely used in the development of hydrogels. Among the polysaccharides, which are studied on hydrogel preparations, chitosan (pure or combined with natural/synthetic polymers) have been widely investigated for use in biomedical field, especially due to its biocompatibility and non-toxicity. Thus, the chitosan-based hydrogels play a crucial role in the development of new biomaterials. Many crosslinking (or polymerization) approaches have been developed to convert chitosan into smart hydrogels, with the aim of obtaining new drug delivery devices. Such hydrogels can also undergo changes in their physical-chemical properties in response to environmental changes such as pH, ionic strength, temperature, magnetic field, and so forth. In view of potential applications of chitosan-based hydrogels, this chapter focuses on the most recent progress made with respect to preparation, properties, and their salient accomplishments in drug delivery.

Keywords

Hydrogel Chitosan Biomaterial Drug release 

References

  1. Abureesh MA, Oladipo AA, Gazi M (2016) Facile synthesis of glucose-sensitive chitosan–poly(vinyl alcohol) hydrogel: drug release optimization and swelling properties. Int J Biol Macromol 90:75–80.  https://doi.org/10.1016/j.ijbiomac.2015.10.001 CrossRefPubMedGoogle Scholar
  2. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121.  https://doi.org/10.1016/j.jare.2013.07.006 CrossRefPubMedGoogle Scholar
  3. Akkaya R, Ulusoy U (2008) Adsorptive features of chitosan entrapped in polyacrylamide hydrogel for Pb2+, UO22+, and Th4+. J Hazard Mater. PO BOX 211, 1000 AE Amsterdam, Netherlands: Elsevier Science BV 151(2–3):380–388.  https://doi.org/10.1016/j.jhazmat.2007.05.084 CrossRefPubMedGoogle Scholar
  4. Alarcon CDH, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev. Thomas Graham House, Science Park, Milton RD, Cambridge CB4 0WF, Cambs, England: Royal SOC Chemistry 34(3):276–285.  https://doi.org/10.1039/b406727d. CrossRefGoogle Scholar
  5. Alves M-H et al (2011) Poly(vinyl alcohol) physical hydrogels: new vista on a long serving biomaterial. Macromol Biosci. POSTFACH 101161, 69451 Weinheim, Germany: Wiley-V C H Verlag GMBH 11(10):1293–1313.  https://doi.org/10.1002/mabi.201100145 CrossRefPubMedGoogle Scholar
  6. Amoozgar Z et al (2012) Semi-interpenetrating network of polyethylene glycol and photocrosslinkable chitosan as an in-situ-forming nerve adhesive. Acta Biomater. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, Oxon, England: Elsevier SCI LTD 8(5):1849–1858.  https://doi.org/10.1016/j.actbio.2012.01.022 CrossRefPubMedGoogle Scholar
  7. Amsden B (1998) Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 31(23):8382–8395.  https://doi.org/10.1021/ma980765f CrossRefGoogle Scholar
  8. Ashley GW et al (2013) Hydrogel drug delivery system with predictable and tunable drug release and degradation rates. Proc Natl Acad Sci U S A. 2101 Constitution Ave NW, Washington, DC 20418 USA: NATL ACAD Sciences 110(6):2318–2323.  https://doi.org/10.1073/pnas.1215498110 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Aycan D, Alemdar N (2018) Development of pH-responsive chitosan-based hydrogel modified with bone ash for controlled release of amoxicillin. Carbohydr Polym. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, Oxon, England: Elsevier Sci LTD 184:401–407.  https://doi.org/10.1016/j.carbpol.2017.12.023 CrossRefPubMedGoogle Scholar
  10. Bai X et al (2018) Chitosan-based thermo/pH double sensitive hydrogel for controlled drug delivery. Macromol Biosci. Wiley Online Library 18:1700305CrossRefGoogle Scholar
  11. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. PO BOX 211, 1000 AE Amsterdam, Netherlands: Elsevier Science BV 62(1):83–99.  https://doi.org/10.1016/j.addr.2009.07.019 CrossRefGoogle Scholar
  12. Billard A et al (2015) Liposome-loaded chitosan physical hydrogel: toward a promising delayed-release biosystem. Carbohydr Polym. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, Oxon, England: Elsevier Sci LTD 115:651–657.  https://doi.org/10.1016/j.carbpol.2014.08.120 CrossRefPubMedGoogle Scholar
  13. Brazel CS, Peppas NA (2000) Modeling of drug release from Swellable polymers. Eur J Pharm Biopharm 49(1):47–58.  https://doi.org/10.1016/S0939-6411(99)00058-2 CrossRefPubMedGoogle Scholar
  14. Caccavo D et al (2015) Modeling the drug release from hydrogel-based matrices. Mol Pharm 12(2):474–483.  https://doi.org/10.1021/mp500563n CrossRefPubMedGoogle Scholar
  15. Calo E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65(SI):252–267.  https://doi.org/10.1016/j.eurpolymj.2014.11.024 CrossRefGoogle Scholar
  16. Che Y et al (2018) Design and fabrication of a triple-responsive chitosan-based hydrogel with excellent mechanical properties for controlled drug delivery. J Polym Res. Van Godewijckstraat 30, 3311 GZ Dordrecht, Netherlands: Springer 25(8):169.  https://doi.org/10.1007/s10965-018-1568-5 CrossRefGoogle Scholar
  17. Chen S-C et al (2004) A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 96(2):285–300.  https://doi.org/10.1016/j.jconrel.2004.02.002 CrossRefPubMedGoogle Scholar
  18. Chen Y et al (2018) Preparation of the chitosan/poly(glutamic acid)/alginate polyelectrolyte complexing hydrogel and study on its drug releasing property. Carbohydr Polym. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, Oxon, England: Elsevier Sci LTD 191:8–16.  https://doi.org/10.1016/j.carbpol.2018.02.065 CrossRefPubMedGoogle Scholar
  19. Christensen LH et al (2003) Long-term effects of polyacrylamide hydrogel on human breast tissue. Plast Reconstr Surg. 530 Walnut St, Philadelphia, PA 19106-3621 USA: lippincott williams & wilkins 111(6):1883–1890.  https://doi.org/10.1097/01.PRS.0000056873.87165.5A CrossRefPubMedGoogle Scholar
  20. Crompton KE et al (2007) Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials. Elsevier 28(3):441–449CrossRefGoogle Scholar
  21. Dash M, Ferri M, Chiellini F (2012) Synthesis and characterization of semi-interpenetrating polymer network hydrogel based on chitosan and poly (methacryloylglycylglycine). Mater Chem Phys. Elsevier 135(2–3):1070–1076CrossRefGoogle Scholar
  22. Dimida S et al (2015) Genipin-cross-linked chitosan-based hydrogels: reaction kinetics and structure-related characteristics. J Appl Polym Sci. 111 River St, Hoboken 07030-5774, NJ USA: Wiley-Blackwell 132(28).  https://doi.org/10.1002/app.42256 CrossRefGoogle Scholar
  23. Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J. PO BOX 564, 1001 Lausanne, Switzerland: Elsevier Science SA 243:572–590.  https://doi.org/10.1016/j.cej.2014.01.065 CrossRefGoogle Scholar
  24. Dragan ES, Cocarta AI, Gierszewska M (2016) Designing novel macroporous composite hydrogels based on methacrylic acid copolymers and chitosan and in vitro assessment of lysozyme controlled delivery. Colloids Surf B Biointerfaces. PO BOX 211, 1000 AE Amsterdam, Netherlands: Elsevier Science BV 139:33–41.  https://doi.org/10.1016/j.colsurfb.2015.12.011 CrossRefPubMedGoogle Scholar
  25. Eichenbaum GM et al (1998) pH and ion-triggered volume response of anionic hydrogel microspheres. Macromolecules. 1155 16TH ST, NW, WASHINGTON, DC 20036 USA: AMER CHEMICAL SOC 31(15):5084–5093.  https://doi.org/10.1021/ma970897t CrossRefPubMedGoogle Scholar
  26. El-Feky GS et al (2018) Chitosan-gelatin hydrogel crosslinked with oxidized sucrose for the ocular delivery of timolol maleate. J Pharm Sci 107(12):3098–3104.  https://doi.org/10.1016/j.xphs.2018.08.015 CrossRefPubMedGoogle Scholar
  27. Falco CY et al (2017) Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics. Carbohydr Polym. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, Oxon, England: Elsevier Sci LTD 172:175–183.  https://doi.org/10.1016/j.carbpol.2017.04.047 CrossRefGoogle Scholar
  28. Fang G et al (2018) Development and evaluation of thermo-sensitive hydrogel system with nanocomplexes for prolonged subcutaneous delivery of enoxaparin. J Drug Delivery Sci Technol 48:118–124.  https://doi.org/10.1016/j.jddst.2018.09.004 CrossRefGoogle Scholar
  29. Ferreira NN et al (2018) Recent advances in smart hydrogels for biomedical applications: from self-assembly to functional approaches. Eur Polym J. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, England: Pergamon-Elsevier Science LTD 99:117–133.  https://doi.org/10.1016/j.eurpolymj.2017.12.004 CrossRefGoogle Scholar
  30. Frenning G (2011) Modelling drug release from inert matrix systems: from moving-boundary to continuous-field descriptions. Int J Pharm 418(1, SI):88–99.  https://doi.org/10.1016/j.ijpharm.2010.11.030 CrossRefPubMedGoogle Scholar
  31. Fu Y, Kao WJ (2010) Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opi Drug Deliv. Taylor & Francis 7(4):429–444.  https://doi.org/10.1517/17425241003602259 CrossRefGoogle Scholar
  32. Fukuda J et al (2006) Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials 27(30):5259–5267.  https://doi.org/10.1016/j.biomaterials.2006.05.044 CrossRefPubMedGoogle Scholar
  33. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J. 233 Spring St, New York, NY 10013 USA: Springer 19(5):375–398Google Scholar
  34. Garcia J, Ruiz-Durantez E, Valderruten NE (2017) Interpenetrating polymer networks hydrogels of chitosan and poly(2-hydroxyethyl methacrylate) for controlled release of quetiapine. React Funct Polym. PO BOX 211, 1000 AE Amsterdam, Netherlands: Elsevier Science BV 117:52–59.  https://doi.org/10.1016/j.reactfunctpolym.2017.06.002 CrossRefGoogle Scholar
  35. Hamedi H et al (2018) Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review. Carbohydr Polym. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, Oxon, England: Elsevier Sci LTD 199:445–460.  https://doi.org/10.1016/j.carbpol.2018.06.114 CrossRefPubMedGoogle Scholar
  36. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. Elsevier 60(15):1638–1649CrossRefGoogle Scholar
  37. Hirose M, Tachibana A, Tanabe T (2010) Recombinant human serum albumin hydrogel as a novel drug delivery vehicle. Mater Sci Eng C 30(5):664–669.  https://doi.org/10.1016/j.msec.2010.02.020 CrossRefGoogle Scholar
  38. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, Oxon, England: Elsevier Sci LTD 49(8):1993–2007.  https://doi.org/10.1016/j.polymer.2008.01.027 CrossRefGoogle Scholar
  39. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev. PO BOX 211, 1000 AE Amsterdam, Netherlands: Elsevier Science BV 64(S):18–23.  https://doi.org/10.1016/j.addr.2012.09.010 CrossRefGoogle Scholar
  40. Holly FJ (1975) Wettability of hydrogels .1. Poly(2-hydroxyethyl methacrylate). J Biomed Mater Res. 605 Third Ave, New York, NY 10158-0012: John Wiley & Sons Inc 9(3):315–326.  https://doi.org/10.1002/jbm.820090307 CrossRefPubMedGoogle Scholar
  41. Horkay F et al (2005) Structural investigations of a neutralized polyelectrolyte gel and an associating neutral hydrogel. Polymer. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, Oxon, England: Elsevier Sci LTD 46(12):4242–4247.  https://doi.org/10.1016/j.polymer.2005.02.054 CrossRefGoogle Scholar
  42. Hsieh C-Y et al (2007) Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydr Polym. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, Oxon, England: Elsevier Sci LTD 67(1):124–132.  https://doi.org/10.1016/j.carbpol.2006.05.002 CrossRefGoogle Scholar
  43. Hu J et al (2012) Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, Oxon, England: Elsevier Sci LTD 8(5):1730–1738.  https://doi.org/10.1016/j.actbio.2012.01.029 CrossRefPubMedGoogle Scholar
  44. Huang W et al (2016) A semi-interpenetrating network polyampholyte hydrogel simultaneously demonstrating remarkable toughness and antibacterial properties. New J Chem. Thomas Graham House, Science Park, Milton RD, Cambridge CB4 0WF, Cambs, England: Royal Soc Chemistry 40(12):10520–10525.  https://doi.org/10.1039/c6nj01833e. CrossRefGoogle Scholar
  45. Jalalvandi E, Shavandi A (2018) In situ-forming and pH-responsive hydrogel based on chitosan for vaginal delivery of therapeutic agents. J Mater Sci Mater Med 29(10).  https://doi.org/10.1007/s10856-018-6166-x
  46. Jeon O et al (2009) Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30(14):2724–2734.  https://doi.org/10.1016/j.biomaterials.2009.01.034 CrossRefPubMedGoogle Scholar
  47. Khan S et al (2010) Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency in rats. J Drug Target 18(3):223–234.  https://doi.org/10.3109/10611860903386938 CrossRefPubMedGoogle Scholar
  48. Kiene K et al (2018) Self-assembling chitosan hydrogel: a drug-delivery device enabling the sustained release of proteins. J Appl Polym Sci 135(1):45638.  https://doi.org/10.1002/app.45638 CrossRefGoogle Scholar
  49. Kim B, Shin Y (2007) pH-sensitive swelling and release behaviors of anionic hydrogels for intelligent drug delivery system. J Appl Polym Sci. 111 River St, Hoboken, NJ 07030 USA: John Wiley & Sons Inc 105(6):3656–3661.  https://doi.org/10.1002/app.26450 CrossRefGoogle Scholar
  50. Kim S et al (2018) Chitosan lysozyme conjugates for enzyme-triggered hydrogel degradation in tissue engineering applications. ACS Appl Mater Interfaces. 1155 16TH ST, NW, Washington, DC 20036 USA: Amer Chemical Soc 10(48):41138–41145.  https://doi.org/10.1021/acsami.8b15591 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Koetting MC et al (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep. PO BOX 564, 1001 Lausanne, Switzerland: Elsevier Science SA 93:1–49.  https://doi.org/10.1016/j.mser.2015.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Koh WG, Revzin A, Pishko MV (2002) Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir. 1155 16TH ST, NW, Washington, DC 20036 USA: Amer Chemical Soc 18(7):2459–2462.  https://doi.org/10.1021/la0115740 CrossRefPubMedGoogle Scholar
  53. Konwar A et al (2016) Chitosan-iron oxide coated graphene oxide nanocomposite hydrogel: a robust and soft antimicrobial biofilm. ACS Appl Mater Interfaces. 1155 16TH ST, NW, Washington, DC 20036 USA: Amer Chemical Soc 8(32):20625–20634.  https://doi.org/10.1021/acsami.6b07510 CrossRefPubMedGoogle Scholar
  54. Kopecek J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28(34):5185–5192.  https://doi.org/10.1016/j.biomaterials.2007.07.044 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lee PI (1985) Kinetics of drug release from hydrogel matrices. J Control Release 2:277–288.  https://doi.org/10.1016/0168-3659(85)90051-3 CrossRefGoogle Scholar
  56. Lee PI, Kim C-J (1991) Probing the mechanisms of drug release from hydrogels. J Control Release 16(1):229–236.  https://doi.org/10.1016/0168-3659(91)90046-G CrossRefGoogle Scholar
  57. Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1(12):pii: 16071.  https://doi.org/10.1038/natrevmats.2016.71 CrossRefGoogle Scholar
  58. Li L et al (2015) Injectable conducting interpenetrating polymer network hydrogels from gelatin-graft-polyaniline and oxidized dextran with enhanced mechanical properties. RSC Adv. Thomas Graham House, Science Park, Milton RD, Cambridge CB4 0WF, Cambs, England: Royal Soc Chemistry 5(112):92490–92498.  https://doi.org/10.1039/c5ra19467a. CrossRefGoogle Scholar
  59. Li Y et al (2018) Chitosan-based thermosensitive hydrogel for nasal delivery of exenatide: effect of magnesium chloride. Int J Pharm 553(1–2):375–385.  https://doi.org/10.1016/j.ijpharm.2018.10.071. CrossRefPubMedGoogle Scholar
  60. Liang S et al (2006) Protein diffusion in agarose hydrogel in situ measured by improved refractive index method. J Control Release 115(2):189–196.  https://doi.org/10.1016/j.jconrel.2006.08.006 CrossRefPubMedGoogle Scholar
  61. Lima-Tenório MK et al (2015) Magnetic nanoparticles: in vivo cancer diagnosis and therapy. Int J Pharm. Elsevier 493(1):313–327CrossRefGoogle Scholar
  62. Lima-Tenório MK, Tenório-Neto ET, Garcia FP et al (2015a) Hydrogel nanocomposite based on starch and co-doped zinc ferrite nanoparticles that shows magnetic field-responsive drug release changes. J Mol Liq 210(A, SI):100–105.  https://doi.org/10.1016/j.molliq.2014.11.027 CrossRefGoogle Scholar
  63. Lima-Tenório MK, Tenório-Neto ET, Guilherme MR et al (2015b) Water transport properties through starch-based hydrogel nanocomposites responding to both pH and a remote magnetic field. Chem Eng J 259:620–629.  https://doi.org/10.1016/j.cej.2014.08.045 CrossRefGoogle Scholar
  64. Lin C-C, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58(12–13):1379–1408.  https://doi.org/10.1016/j.addr.2006.09.004 CrossRefGoogle Scholar
  65. Lin DC, Yurke B, Langrana NA (2004) Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J Biomech Eng-Trans ASME. Three Park Ave, New York, NY 10016-5990 USA: ASME-Amer Soc Mechanical Eng 126(1):104–110.  https://doi.org/10.1115/1.1645529 CrossRefGoogle Scholar
  66. Lin WC, Yu DG, Yang MC (2005) pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties. Colloids Surf B Biointerfaces. PO BOX 211, 1000 AE Amsterdam, Netherlands: Elsevier Science BV 44(2–3):143–151.  https://doi.org/10.1016/j.colsurfb.2005.06.010 CrossRefPubMedGoogle Scholar
  67. Liu L et al (2016) In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration. Asian J Pharm Sci. Elsevier 11(6):673–683CrossRefGoogle Scholar
  68. Luo Y, Shoichet MS (2004) A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater. Nature Publishing Group 3:249CrossRefGoogle Scholar
  69. Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol. PO BOX 211, 1000 AE Amsterdam, Netherlands: Elsevier Science BV 64:353–367.  https://doi.org/10.1016/j.ijbiomac.2013.12.017 CrossRefPubMedGoogle Scholar
  70. Lv X et al (2018) Hygroscopicity modulation of hydrogels based on carboxymethyl chitosan/alginate polyelectrolyte complexes and its application as pH-sensitive delivery system. Carbohydr Polym 198:86–93.  https://doi.org/10.1016/j.carbpol.2018.06.058 CrossRefPubMedGoogle Scholar
  71. Mahinroosta M et al (2018) Hydrogels as intelligent materials: a brief review of synthesis, properties and applications. Mater Today Chem. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, Oxon, England: Elsevier Sci LTD 8:42–55.  https://doi.org/10.1016/j.mtchem.2018.02.004 CrossRefGoogle Scholar
  72. Mano JF (2008) Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater. Commerce Place, 350 Main St, Malden 02148, MA USA: Wiley-Blackwell 10(6):515–527.  https://doi.org/10.1002/adem.200700355 CrossRefGoogle Scholar
  73. Meilander NJ et al (2003) Sustained release of plasmid DNA using lipid microtubules and agarose hydrogel. J Control Release 88(2):321–331.  https://doi.org/10.1016/S0168-3659(03)00007-5 CrossRefPubMedGoogle Scholar
  74. Mirzaei BE et al (2013) Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int J Polym Mater Polym Biomater. Taylor & Francis 62(11):605–611CrossRefGoogle Scholar
  75. Mohammed MA et al (2017) An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. MDPI 9(4):53.  https://doi.org/10.3390/pharmaceutics9040053 CrossRefPubMedCentralGoogle Scholar
  76. Montiel-Herrera M et al (2015) N-(furfural) chitosan hydrogels based on Diels-Alder cycloadditions and application as microspheres for controlled drug release. Carbohydr Polym. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, Oxon, England: Elsevier Sci LTD 128:220–227.  https://doi.org/10.1016/j.carbpol.2015.03.052 CrossRefPubMedGoogle Scholar
  77. Mukhopadhyay P et al (2014) pH sensitive N-succinyl chitosan grafted polyacrylamide hydrogel for oral insulin delivery. Carbohydr Polym. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, Oxon, England: Elsevier Sci LTD 112:627–637.  https://doi.org/10.1016/j.carbpol.2014.06.045 CrossRefPubMedGoogle Scholar
  78. Murakami K et al (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31(1):83–90.  https://doi.org/10.1016/j.biomaterials.2009.09.031 CrossRefPubMedGoogle Scholar
  79. Myung D et al (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol. 111 River St, Hoboken 07030-5774, NJ USA: Wiley-Blackwell 19(6):647–657.  https://doi.org/10.1002/pat.1134 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, England: Pergamon-Elsevier Science LTD 32(8–9):762–798.  https://doi.org/10.1016/j.progpolymsci.2007.05.017 CrossRefGoogle Scholar
  81. Nazar H et al (2011) Thermosensitive hydrogels for nasal drug delivery: the formulation and characterisation of systems based on N-trimethyl chitosan chloride. Eur J Pharm Biopharm 77(2):225–232.  https://doi.org/10.1016/j.ejpb.2010.11.022 CrossRefPubMedGoogle Scholar
  82. Ngadaonye JI et al (2013) Development of novel chitosan-poly (N, N-diethylacrylamide) IPN films for potential wound dressing and biomedical applications. J Polym Res. Springer 20(7):161CrossRefGoogle Scholar
  83. Novikova LN et al (2006) Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. J Biomed Mater Res A 77A(2):242–252.  https://doi.org/10.1002/jbm.a.30603 CrossRefGoogle Scholar
  84. O’Neill HS et al (2017) A stimuli responsive liposome loaded hydrogel provides flexible on-demand release of therapeutic agents. Acta Biomater. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, Oxon, England: Elsevier Sci LTD 48:110–119.  https://doi.org/10.1016/j.actbio.2016.10.001 CrossRefPubMedGoogle Scholar
  85. Oladipo AA, Gazi M, Yilmaz E (2015) Single and binary adsorption of azo and anthraquinone dyes by chitosan-based hydrogel: selectivity factor and box-Behnken process design. Chem Eng Res Des 104:264–279.  https://doi.org/10.1016/j.cherd.2015.08.018 CrossRefGoogle Scholar
  86. Pawar V, Dhanka M, Srivastava R (2019) Cefuroxime conjugated chitosan hydrogel for treatment of wound infections. Colloids Surf B Biointerfaces 173:776–787.  https://doi.org/10.1016/j.colsurfb.2018.10.034 CrossRefPubMedGoogle Scholar
  87. Pellá MCG et al (2018) Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr Polym 196:233–245.  https://doi.org/10.1016/j.carbpol.2018.05.033. CrossRefPubMedGoogle Scholar
  88. Peng Y et al (2013) Optimization of thermosensitive chitosan hydrogels for the sustained delivery of venlafaxine hydrochloride. Int J Pharm 441(1–2):482–490.  https://doi.org/10.1016/j.ijpharm.2012.11.005. CrossRefPubMedGoogle Scholar
  89. Peng H et al (2019) The antitumor effect of cisplatin-loaded thermosensitive chitosan hydrogel combined with radiotherapy on nasopharyngeal carcinoma. Int J Pharm 556:97–105.  https://doi.org/10.1016/j.ijpharm.2018.11.068 CrossRefPubMedGoogle Scholar
  90. Peppas NA et al (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46.  https://doi.org/10.1016/S0939-6411(00)00090-4 CrossRefGoogle Scholar
  91. Pillai O, Panchagnula R (2001) Polymers in drug delivery. Curr Opin Chem Biol 5(4):447–451.  https://doi.org/10.1016/S1367-5931(00)00227-1 CrossRefPubMedGoogle Scholar
  92. Pitt CG (1990) The controlled parenteral delivery of polypeptides and proteins. Int J Pharm 59(3):173–196.  https://doi.org/10.1016/0378-5173(90)90108-G CrossRefGoogle Scholar
  93. Priya P, Raja A, Raj V (2016) Interpenetrating polymeric networks of chitosan and egg white with dual crosslinking agents polyethylene glycol/polyvinylpyrrolidone as a novel drug carrier. Cellulose. Springer 23(1):699–712CrossRefGoogle Scholar
  94. Qu J et al (2017) pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomater. Elsevier 58:168–180CrossRefGoogle Scholar
  95. Ramirez Barragan CA et al (2018) Rheological characterization of new thermosensitive hydrogels formed by chitosan, glycerophosphate, and phosphorylated beta-cyclodextrin. Carbohydr Polym. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, Oxon, England: Elsevier Sci LTD 201:471–481.  https://doi.org/10.1016/j.carbpol.2018.08.076 CrossRefPubMedGoogle Scholar
  96. Ratner BD, Miller IF (1973) Transport through crosslinked poly(2-hydroxyethyl methacrylate) hydrogel membranes. J Biomed Mater Res. 605 Third Ave, New York, NY 10158-0012: John Wiley & Sons Inc 7(4):353–367.  https://doi.org/10.1002/jbm.820070407 CrossRefPubMedGoogle Scholar
  97. Rehage G, Ernst O, Fuhrmann J (1970) Fickian and non-Fickian diffusion in high polymer systems. Discuss Faraday Soc. The Royal Society of Chemistry 49(0):208–221.  https://doi.org/10.1039/DF9704900208 CrossRefGoogle Scholar
  98. Revzin A et al (2001) Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. Langmuir. 1155 16TH ST, NW, Washington, DC 20036 USA: Amer Chemical Soc 17(18):5440–5447.  https://doi.org/10.1021/la010075w CrossRefPubMedGoogle Scholar
  99. Rickett TA et al (2011) Rapidly photo-cross-linkable chitosan hydrogel for peripheral neurosurgeries. Biomacromolecules. 1155 16TH ST, NW, Washington, DC 20036 USA: Amer Chemical Soc 12(1):57–65.  https://doi.org/10.1021/bm101004r CrossRefPubMedGoogle Scholar
  100. Rizwan M et al (2017) pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications. Polymers. St Alban-Anlage 66, CH-4052 Basel, Switzerland: MDPI AG 9(4):137.  https://doi.org/10.3390/polym9040137 CrossRefPubMedCentralGoogle Scholar
  101. Rodkate N et al (2010) Semi-interpenetrating polymer network hydrogels between polydimethylsiloxane/polyethylene glycol and chitosan. Carbohydr Polym. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, Oxon, England: Elsevier Sci LTD 81(3):617–625.  https://doi.org/10.1016/j.carbpol.2010.03.023 CrossRefGoogle Scholar
  102. Salva E, Akbuga J (2017) The effects to GM-CSF expression and fibroblast proliferation of pGM-CSF containing chitosan/PVP hydrogels. Marmara Pharm J. Haydarpasa, Istanbul, 34668, Turkey: Marmara UNIV, FAC Pharmacy 21(2):228–234.  https://doi.org/10.12991/marupj.278854 CrossRefGoogle Scholar
  103. Sereni N et al (2017) Dynamic structuration of physical chitosan hydrogels. Langmuir. ACS Publications 33(44):12697–12707CrossRefGoogle Scholar
  104. Sun G et al (2017) Thermo-responsive hydroxybutyl chitosan hydrogel as artery intervention embolic agent for hemorrhage control. Int J Biol Macromol 105(1):566–574.  https://doi.org/10.1016/j.ijbiomac.2017.07.082. CrossRefPubMedGoogle Scholar
  105. Szymańska E, Winnicka K (2015) Stability of chitosan—a challenge for pharmaceutical and biomedical applications. Mar Drugs 13(4):1819–1846.  https://doi.org/10.3390/md13041819 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Tabata Y, Ikada Y (1999) Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials 20(22):2169–2175.  https://doi.org/10.1016/S0142-9612(99)00121-0 CrossRefPubMedGoogle Scholar
  107. Tabata Y, Hijikata S, Ikada Y (1994) Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. J Control Release 31(2):189–199.  https://doi.org/10.1016/0168-3659(94)00035-2 CrossRefGoogle Scholar
  108. Tan W-H, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19(18):2696–2701.  https://doi.org/10.1002/adma.200700433 CrossRefGoogle Scholar
  109. Wang Y et al (2018) Ultrasonic assisted microwave synthesis of poly (chitosan-co-gelatin)/polyvinyl pyrrolidone IPN hydrogel. Ultrason Sonochem. Elsevier 40:714–719CrossRefGoogle Scholar
  110. Wen H, Jung H, Li X (2015) Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. AAPS J 17(6):1327–1340.  https://doi.org/10.1208/s12248-015-9814-9 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Wichterle O, Lím D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118.  https://doi.org/10.1038/185117a0 CrossRefGoogle Scholar
  112. Xiao C et al (2016a) Tunable functional hydrogels formed from a versatile water-soluble chitosan. Int J Biol Macromol 85:386–390.  https://doi.org/10.1016/j.ijbiomac.2016.01.006 CrossRefPubMedGoogle Scholar
  113. Xiao Y et al (2016b) Fabrication and characterization of a glucose-sensitive antibacterial chitosan-polyethylene oxide hydrogel. Polymer. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, Oxon, England: Elsevier Sci LTD 82:1–10.  https://doi.org/10.1016/j.polymer.2015.11.016 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Xu X et al (2013) Sustained release of avastin (R) from polysaccharides cross-linked hydrogels for ocular drug delivery. Int J Biol Macromol 60:272–276.  https://doi.org/10.1016/j.ijbiomac.2013.05.034 CrossRefPubMedGoogle Scholar
  115. Yamamoto M, Ikada Y, Tabata Y (2001) Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed. Taylor & Francis 12(1):77–88.  https://doi.org/10.1163/156856201744461 CrossRefPubMedGoogle Scholar
  116. Yang J et al (2013) pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr Polym 92(1):719–725.  https://doi.org/10.1016/j.carbpol.2012.09.036 CrossRefPubMedGoogle Scholar
  117. Yannas IV et al (1989) Synthesis and characterization of a model extracellular-matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci U S A. 2101 Constitution Ave NW, Washington, DC 20418 USA: Natl Acad Sciences 86(3):933–937.  https://doi.org/10.1073/pnas.86.3.933 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Yu S et al (2017) A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym. Elsevier 155:208–217CrossRefGoogle Scholar
  119. Zhang Y, Chan HF, Leong KW (2013) Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 65(1):104–120.  https://doi.org/10.1016/j.addr.2012.10.003 CrossRefPubMedGoogle Scholar
  120. Zhang W et al (2016) Genipin cross-linked chitosan hydrogel for the controlled release of tetracycline with controlled release property, lower cytotoxicity, and long-term bioactivity. J Polym Res. Van Godewijckstraat 30, 3311 GZ Dordrecht, Netherlands: Springer 23(8):1–9.  https://doi.org/10.1007/s10965-016-1059-5 CrossRefGoogle Scholar
  121. Zhang R-Y et al (2018a) Tunable pH-responsive chitosan-poly(acrylic acid) electrospun fibers. Biomacromolecules. 1155 16TH ST, NW, Washington, DC 20036 USA: AMER Chemical Soc 19(2):588–595.  https://doi.org/10.1021/acs.biomac.7b01672 CrossRefPubMedGoogle Scholar
  122. Zhang N et al (2018b) Modulation of osteogenic and haemostatic activities by tuning cationicity of genipin-crosslinked chitosan hydrogels. Colloids Surf B Biointerfaces. PO BOX 211, 1000 AE Amsterdam, Netherlands: Elsevier Science BV 166:29–36.  https://doi.org/10.1016/j.colsurfb.2018.02.056 CrossRefPubMedGoogle Scholar
  123. Zhang W et al (2018c) Data on the experiments of temperature-sensitive hydrogels for pH-sensitive drug release and the characterizations of materials. Data Brief. Elsevier 17:419–423CrossRefGoogle Scholar
  124. Zhang W et al (2019) Onion-structure bionic hydrogel capsules based on chitosan for regulating doxorubicin release. Carbohydr Polym 209:152–160.  https://doi.org/10.1016/j.carbpol.2019.01.028 CrossRefPubMedGoogle Scholar
  125. Zhou Y et al (2018) Photopolymerized water-soluble maleilated chitosan/methacrylated poly (vinyl alcohol) hydrogels as potential tissue engineering scaffolds. Int J Biol Macromol. PO BOX 211, 1000 AE Amsterdam, Netherlands: Elsevier Science BV 106:227–233.  https://doi.org/10.1016/j.ijbiomac.2017.08.002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Michelly Cristina Galdioli Pellá
    • 1
  • Hugo Henrique Carline de Lima
    • 2
  • Andrelson Wellington Rinaldi
    • 2
  • André Ricardo Fajardo
    • 3
  • Ernandes Taveira Tenório-Neto
    • 4
  • Marcos Rogério Guilherme
    • 1
  • Adley Forti Rubira
    • 1
  • Michele Karoline Lima-Tenório
    • 1
    • 4
  1. 1.Grupo de Materiais Poliméricos e Compósitos (GMPC), Department of ChemistryState University of MaringáMaringáBrazil
  2. 2.Laboratório de Química de Materiais e Sensores (LMSEN), Department of ChemistryState University of MaringáMaringáBrazil
  3. 3.Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol)Federal University of PelotasPelotasBrazil
  4. 4.Department of ChemistryState University of Ponta GrossaPonta GrossaBrazil

Personalised recommendations