Grafted Chitosan Systems for Biomedical Applications

  • S. Dhanavel
  • Sheril Ann Mathew
  • A. Stephen


Chitosan is one of the most abundant biopolymers obtained from the deacetylation of chitin. It has received considerable attention in recent years owing to its various beneficial pharmacological properties such as anti-acid properties, antitumour, hypocholesterolemic action, wound-healing properties, antiulcer properties, spermicidal activity and haemostatic properties. Most recently it has been used as the matrix for the drug delivery, gene delivery and tissue engineering applications. The application of chitosan in pharmaceutical industry has been extensively explored. However, pure chitosan has its limitations in its processability and reactivity. Poor water solubility is the major problem for utilizing the material in biomedical applications. To overcome this limitation, chitosan surface has been altered using physical interactions (inorganic composites and polyelectrolyte complexes) and chemical modification. Recently chitosan has been grafted with other molecules to get some desired properties such as controlled drug delivery, targeting specific tissues and enhanced antimicrobial efficacy. Moreover, the formation of grafted chitosan increases reactive functional groups which make them superior material for the complexation with other metals, metal oxides or materials like graphene and carbon nanotube. The grafted chitosan-based composites enhance their usage in pharmaceuticals over bare chitosan. This chapter highlights the need of grafted chitosan, synthesis techniques to get desired properties and their applications in biomedical field.


Grafted chitosan Synthesis Properties Biomedical applications Future aspects 


  1. Adhikari HS, Yadav PN (2018) Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. Int J Biomater 2018:29CrossRefGoogle Scholar
  2. Ahmed S, Ikram S (2016) Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci 10(1):27–37Google Scholar
  3. Ahmed S, Annu, Ali A, Sheikh J (2018) A review on chitosan centred scaffolds and their applications in tissue engineering. Int J Biol Macromol 116:849–862PubMedCrossRefPubMedCentralGoogle Scholar
  4. Al-Dosari MS, Gao X (2009) Nonviral gene delivery: principle, limitations, and recent progress. AAPS J 11(4):671–681PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286PubMedCrossRefPubMedCentralGoogle Scholar
  6. Badawy M, Rabea EI (2016) Synthesis and antimicrobial activity of N-(6-carboxyl cyclohex-3-ene carbonyl) chitosan with different degrees of substitution. Int J Carbohydr Chem 2016(1):1–10CrossRefGoogle Scholar
  7. Barata JFB, Pinto RJB, Vaz Serra VIRC, Silvestre AJD, Trindade T, Neves MG, Cavaleiro JA, Daina S, Sadocco P, Freire CSR (2016) Fluorescent bioactive corrole grafted-chitosan films. Biomacromolecules 17(4):1395–1403PubMedCrossRefPubMedCentralGoogle Scholar
  8. Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H-A (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109(11):5437–5527PubMedCrossRefPubMedCentralGoogle Scholar
  9. Benkocká M, Lupínková S, Matoušek J, Kolářová K, Kolská Z (2018) Antimicrobial and optical properties of PET chemically modified and grafted with borane compounds. RSC Adv 8(27):15001–15008CrossRefGoogle Scholar
  10. Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog Polym Sci 29(8):767–814CrossRefGoogle Scholar
  11. Cele Z, Ndlandla L, Somboro A, Gyamfi D, Balogun M (2018) Synthesis, characterization and antimicrobial activities of quaternary chitosan-based materials. IOP Conf Ser Mater Sci Eng 430:012048CrossRefGoogle Scholar
  12. Chang S-H, Wu C-H, Tsai G-J (2018) Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydr Polym 181:1026–1032PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chatterjee NS, Anandan R, Navitha M, Asha KK, Kumar KA, Mathew S, Ravishankar CN (2016) Development of thiamine and pyridoxine loaded ferulic acid-grafted chitosan microspheres for dietary supplementation. J Food Sci Technol 53(1):551–560PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chen F, Shi Z, G Neoh K, T Kang E (2009) Antioxidant and antibacterial activities of eugenol and carvacol-grafted chitosan nanoparticles. Biotechnol Bioeng 104:30–39PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cheung RCF, Ng TB, Wong JH, Chan WY (2015) Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs 13(8):5156–5186PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chu E, Sidorenko A (2013) Surface reconstruction by a “grafting through” approach: polyacrylamide grafted onto chitosan film. Langmuir 29(40):12585–12592PubMedCrossRefPubMedCentralGoogle Scholar
  17. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–792CrossRefGoogle Scholar
  18. Dai J, Zou S, Pei Y, Cheng D, Ai H, Shuai X (2011) Polyethylenimine-grafted copolymer of poly(l-lysine) and poly(ethylene glycol) for gene delivery. Biomaterials 32(6):1694–1705PubMedCrossRefPubMedCentralGoogle Scholar
  19. Dhanavel S, Nivethaa EAK, Narayanan V, Stephen A (2017) In vitro cytotoxicity study of dual drug loaded chitosan/palladium nanocomposite towards HT-29 cancer cells. Mater Sci Eng C 75:1399–1410CrossRefGoogle Scholar
  20. Dhanavel S, Manivannan N, Mathivanan N, Gupta VK, Narayanan V, Stephen A (2018) Preparation and characterization of cross-linked chitosan/palladium nanocomposites for catalytic and antibacterial activity. J Mol Liq 257:32–41CrossRefGoogle Scholar
  21. Díez-Pascual AM, Díez-Vicente AL (2016) Electrospun fibers of chitosan-grafted polycaprolactone/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) blends. J Mater Chem B 4(4):600–612CrossRefGoogle Scholar
  22. Dillow A, Lowman A (2002) Biomimetic materials and design: biointerfacial strategies, tissue engineering and targeted drug delivery. Taylor & Francis, LondonCrossRefGoogle Scholar
  23. Don T-M, King C-F, Chiu W-Y, Peng C-A (2006) Preparation and characterization of chitosan-g-poly(vinyl alcohol)/poly(vinyl alcohol) blends used for the evaluation of blood-contacting compatibility. Carbohydr Polym 63:331–339CrossRefGoogle Scholar
  24. Dufresne A, Thomas S, Pothan LA, Grossman RF, Nwabunma D (2013) Biopolymer nanocomposites: processing, properties, and applications. Wiley, HobokenCrossRefGoogle Scholar
  25. Elgadir MA, Uddin MS, Ferdosh S, Adam A, Chowdhury AJK, Sarker MZI (2015) Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J Food Drug Anal 23(4):619–629PubMedCrossRefPubMedCentralGoogle Scholar
  26. Emadi F, Amini A, Gholami A, Ghasemi Y (2017) Functionalized graphene oxide with chitosan for protein nanocarriers to protect against enzymatic cleavage and retain collagenase activity. Sci Rep 7:42258PubMedPubMedCentralCrossRefGoogle Scholar
  27. Ensafi AA, Jafari-Asl M, Dorostkar N, Ghiaci M, Martínez-Huerta MV, Fierro JLG (2014) The fabrication and characterization of Cu-nanoparticle immobilization on a hybrid chitosan derivative-carbon support as a novel electrochemical sensor: application for the sensitive enzymeless oxidation of glucose and reduction of hydrogen peroxide. J Mater Chem B 2(6):706–717CrossRefGoogle Scholar
  28. Fatoni A, Numnuam A, Kanatharana P, Limbut W, Thavarungkul P (2014) A conductive porous structured chitosan-grafted polyaniline cryogel for use as a sialic acid biosensor. Electrochim Acta 130:296–304CrossRefGoogle Scholar
  29. Foster LJR, Ho S, Hook J, Basuki M, Marçal H (2015) Chitosan as a biomaterial: influence of degree of deacetylation on its physiochemical, material and biological properties. PLoS One 10(8):e0135153PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fu D-J, Jin Y, Xie M-Q, Ye Y-J, Qin D-D, Lou K-Y, Chena Y-Z, Gao F (2014) Preparation and characterization of mPEG grafted chitosan micelles as 5-fluorouracil carriers for effective anti-tumor activity. Chin Chem Lett 25(11):1435–1440CrossRefGoogle Scholar
  31. Gawish S, El-Ola S, Ramadan A, Abou El-Kheir A (2012) Citric acid used as a crosslinking agent for the grafting of chitosan onto woolen fabric. J Appl Polym Sci 123:3345–3353CrossRefGoogle Scholar
  32. Glass PSA, Doherty D, Jacobs JR, Quill TJ (1991) Pharmacokinetic basis of intravenous drug delivery. Baillière’s Clin Anaesthesiol 5(3):735–775CrossRefGoogle Scholar
  33. Gomathi P, Kim MK, Park JJ, Ragupathy D, Rajendran A, Lee SC, Kim JC, Lee SH, Ghim HD (2011) Multiwalled carbon nanotubes grafted chitosan nanobiocomposite: a prosperous functional nanomaterials for glucose biosensor application. Sensors Actuators B Chem 155(2):897–902CrossRefGoogle Scholar
  34. Han S-O, Mahato RI, Sung YK, Kim SW (2000) Development of biomaterials for gene therapy. Mol Ther 2(4):302–317PubMedCrossRefPubMedCentralGoogle Scholar
  35. Harding D, Sashiwa H (2018) Advances in marine chitin and chitosan. MDPI AG, BarcelonaGoogle Scholar
  36. Harrison K (2007) 2 – Introduction to polymeric drug delivery systems. In: Jenkins M (ed) Biomedical polymers. Woodhead Publishing, Cambridge, pp 33–56CrossRefGoogle Scholar
  37. Hassan M (2018) Enhanced antimicrobial activity and reduced water absorption of chitosan films graft copolymerized with poly(acryloyloxy)ethyltrimethylammonium chloride. Int J Biol Macromol 118:1685–1695PubMedCrossRefPubMedCentralGoogle Scholar
  38. He G, Ke W, Liu L, Li Y, Zheng H, Yin Y, Yi Y (2017) Preparation, swelling and antibacterial behaviors of N-succinyl chitosan-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogels. J Wuhan Univ Technol Mater Sci Ed 32(4):963–970CrossRefGoogle Scholar
  39. Hoang D, Tran V, Quyen T, Nguyen C, Nguyen TH, Dung Truong M, Tran DL, Tran DL, Nguyen DH (2016) Functionalization of Fe3O4 nanoparticles with biodegradable chitosan-grafted-mPEG for paclitaxel delivery. Green Process Synth 5(5):459–466Google Scholar
  40. Hsiao M-H, Mu Q, Stephen ZR, Fang C, Zhang M (2015) Hexanoyl-chitosan-PEG copolymer coated Iron oxide nanoparticles for hydrophobic drug delivery. ACS Macro Lett 4(4):403–407PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hu S-G, Jou C-H, Yang M-C (2003) Antibacterial and biodegradable properties of polyhydroxyalkanoates grafted with chitosan and chitooligosaccharides via ozone treatment. J Appl Polym Sci 88(12):2797–2803CrossRefGoogle Scholar
  42. Hu B, Wang Y, Xie M, Hu G, Ma F, Zeng X (2015) Polymer nanoparticles composed with gallic acid grafted chitosan and bioactive peptides combined antioxidant, anticancer activities and improved delivery property for labile polyphenols. J Funct Foods 15:593–603CrossRefGoogle Scholar
  43. Hu D, Wang H, Wang L (2016) Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. LWT Food Sci Technol 65:398–405CrossRefGoogle Scholar
  44. Huang R, Rajapakse N, Kim S-K (2006) Structural factors affecting radical scavenging activity of chitooligosaccharides (COS) and its derivatives. Carbohydr Polym 63(1):122–129CrossRefGoogle Scholar
  45. Huh KM, Kang HC, Lee YJ, Bae YH (2012) pH-sensitive polymers for drug delivery. Macromol Res 20(3):224–233CrossRefGoogle Scholar
  46. Ismail AS, Darwish MSA, Ismail EA (2017) Synthesis and characterization of hydrophilic chitosan-polyvinyl acetate blends and their sorption performance in binary methanol–water mixture. Egypt J Pet 26(1):17–22CrossRefGoogle Scholar
  47. Ito M, Ban A, Ishihara M (2000) Anti-ulcer effects of chitin and chitosan, healthy foods, in rats. Jpn J Pharmacol 82(3):218–225PubMedCrossRefPubMedCentralGoogle Scholar
  48. Jaiswal S, Dutta PK, Kumar S, Koh J, Pandey S (2019) Methyl methacrylate modified chitosan: synthesis, characterization and application in drug and gene delivery. Carbohydr Polym 211:109–117PubMedCrossRefPubMedCentralGoogle Scholar
  49. Jayakumar R, Prabaharan M, Reis RL, Mano JF (2005) Graft copolymerized chitosan – present status and applications. Carbohydr Polym 62(2):142–158CrossRefGoogle Scholar
  50. Jenkins DW, Hudson SM (2002) Heterogeneous graft copolymerization of chitosan powder with methyl acrylate using trichloroacetyl−manganese carbonyl co-initiation. Macromolecules 35(9):3413–3419CrossRefGoogle Scholar
  51. Jennings J, Bumgardner J, Alexander C (2016) Chitosan based biomaterials: volume 2: tissue engineering and therapeutics. Woodhead, DuxfordGoogle Scholar
  52. Jiang Y, Fu C, Wu S, Liu G, Guo J, Su Z (2017) Determination of the deacetylation degree of chitooligosaccharides. Mar Drugs 15(11):332PubMedCentralCrossRefGoogle Scholar
  53. Kasper FK, Mikos AG (2004) Biomaterials and gene therapy. In: Advances in chemical engineering. Academic, San Diego, pp 131–168Google Scholar
  54. Khan N, Afaq F, Mukhtar H (2010) Lifestyle as risk factor for cancer: evidence from human studies. Cancer Lett 293(2):133–143PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kim S (2018) Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int J f Polym Sci 2018:13Google Scholar
  56. Kim D-H, Je J-Y (2015) Antimicrobial activity of Gallic acid-grafted-chitosan against fish pathogens. J Carbohydr Chem 34(3):163–171CrossRefGoogle Scholar
  57. Kim Y-M, Park S-C, Jang M-K (2017) Targeted gene delivery of polyethyleneimine-grafted chitosan with RGD dendrimer peptide in αvβ3 integrin-overexpressing tumor cells. Carbohydr Polym 174:1059–1068PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kimura Y (2008) Antitumor and antimetastatic actions of various natural products. In: Atta ur R (ed) Studies in natural products chemistry. Elsevier, Amsterdam, pp 35–76Google Scholar
  59. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021CrossRefGoogle Scholar
  60. Kudgus RA, Walden CA, McGovern RM, Reid JM, Robertson JD, Mukherjee P (2014) Tuning pharmacokinetics and biodistribution of a targeted drug delivery system through incorporation of a passive targeting component. Sci Rep 4:5669PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kulbokaite R, Ciuta G, Netopilik M, Makuska R (2009) N-PEG’ylation of chitosan via “click chemistry” reactions. React Funct Polym 69(10):771–778CrossRefGoogle Scholar
  62. Kumar Sharma A, Mishra A (2010) Microwave assisted synthesis of chitosan-graft-styrene for efficient Cr(VI) removal. Adv Mater Lett 1(1):59–66CrossRefGoogle Scholar
  63. Kumar D, Kumar P, Pandey J (2018) Binary grafted chitosan film: synthesis, characterization, antibacterial activity and prospects for food packaging. Int J Biol Macromol 115:341–348PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kumari S, Rath PK (2014) Extraction and characterization of chitin and chitosan from (Labeo rohit) fish scales. Procedia Mater Sci 6:482–489CrossRefGoogle Scholar
  65. Kumirska J, Weinhold MX, Thöming J, Stepnowski P (2011) Biomedical activity of chitin/chitosan based materials—influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers 3(4):1875CrossRefGoogle Scholar
  66. Kushi LH, Doyle C, McCullough M, Rock CL, Demark-Wahnefried W, Bandera EV, Gapstur S, Patel AV, Andrews K, Gansler T, American Cancer Society 2010 Nutrition and Physical Activity Guidelines Advisory Committee (2012) American Cancer Society guidelines on nutrition and physical activity for cancer prevention. CA Cancer J Clin 62(1):30–67PubMedCrossRefPubMedCentralGoogle Scholar
  67. Layek B, Singh J (2013) Caproic acid grafted chitosan cationic nanocomplexes for enhanced gene delivery: effect of degree of substitution. Int J Pharm 447(1):182–191PubMedCrossRefPubMedCentralGoogle Scholar
  68. Layek B, Singh J (2017) 8 – Chitosan for DNA and gene therapy. In: Jennings JA, Bumgardner JD (eds) Chitosan based biomaterials, vol 2. Woodhead Publishing, Cambridge, pp 209–244CrossRefGoogle Scholar
  69. Layek B, Haldar MK, Sharma G, Lipp L, Mallik S, Singh J (2014) Hexanoic acid and polyethylene glycol double grafted amphiphilic chitosan for enhanced gene delivery: influence of hydrophobic and hydrophilic substitution degree. Mol Pharm 11(3):982–994PubMedCrossRefPubMedCentralGoogle Scholar
  70. Lee H-L, Wang R-S, Hsu Y-C, Chuang C-C, Chan H-R, Chiu H-C, Wang YB, Chen KY, Fu E (2018) Antifungal effect of tissue conditioners containing poly(acryloyloxyethyltrimethyl ammonium chloride)-grafted chitosan on Candida albicans growth in vitro. J Dent Sci 13(2):160–166PubMedPubMedCentralCrossRefGoogle Scholar
  71. Levy G (1973) Pharmacokinetic aspects of controlled drug delivery systems. In: Urquhart J, Yates FE (eds) Temporal aspects of therapeutics. Springer, Boston, pp 107–127CrossRefGoogle Scholar
  72. Li H, Jiang Z, Han B, Niu S, Dong W, Liu W (2015) Pharmacokinetics and biodegradation of chitosan in rats. J Ocean Univ China 14(5):897–904CrossRefGoogle Scholar
  73. Li J, Ye Y, Xiao H, He B, Qian L (2017) Microwave assisted preparation of antimicrobial chitosan with guanidine oligomers and its application in hygiene paper products. J Appl Polym Sci 133(25):43570Google Scholar
  74. Liang Y, Zhao X, Ma PX, Guo B, Du Y, Han X (2019) pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. J Colloid Interface Sci 536:224–234PubMedCrossRefPubMedCentralGoogle Scholar
  75. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173PubMedPubMedCentralCrossRefGoogle Scholar
  76. Liu J, Lu J-F, Kan J, Jin C-H (2013) Synthesis of chitosan-gallic acid conjugate: structure characterization and in vitro anti-diabetic potential. Int J Biol Macromol 62:321–329PubMedCrossRefPubMedCentralGoogle Scholar
  77. Liu M, Wang Y, Cheng Z, Zhang M, Hu M, Li J (2015) Electrospun carboxylic-functionalized poly(arylene ether ketone) ultrafine fibers: optimization, characterization, and water absorption behavior. High Perform Polym 27(8):939–949CrossRefGoogle Scholar
  78. Liu H, Gong C, Wang J, Liu X, Liu H, Cheng F, Wang G, Zheng G, Qin C, Wen S (2016a) Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications. Carbohydr Polym 136:1379–1385PubMedCrossRefPubMedCentralGoogle Scholar
  79. Liu, X., Mo, Y., Liu, X., Guo, R., Zhang, Y., Xue, W., . Zhang, Y., Wang, C., Ramakrishna, S. (2016b). Synthesis, characterisation and preliminary investigation of the haemocompatibility of polyethyleneimine-grafted carboxymethyl chitosan for gene delivery. Mater Sci Eng C, 62, 173–182CrossRefGoogle Scholar
  80. Liu J, Meng C-G, Liu S, Kan J, Jin C-H (2017) Preparation and characterization of protocatechuic acid grafted chitosan films with antioxidant activity. Food Hydrocoll 63:457–466CrossRefGoogle Scholar
  81. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502PubMedPubMedCentralCrossRefGoogle Scholar
  82. Ma X, Ge J, Li Y, Guo B, Ma PX (2014) Nanofibrous electroactive scaffolds from a chitosan-grafted-aniline tetramer by electrospinning for tissue engineering. RSC Adv 4(26):13652–13661CrossRefGoogle Scholar
  83. Ma D, Zhu B, Cao B, Wang J, Zhang J (2016) The microstructure and swelling properties of poly acrylic acid-acrylamide grafted starch hydrogels. J Macromol Sci Part B 55(11):1124–1133CrossRefGoogle Scholar
  84. Madill EAW, García-Valdez O, Champagne P, Cunningham M (2017) CO2-responsive graft modified chitosan for heavy metal (nickel) recovery. Polymers 9:394. CrossRefPubMedCentralGoogle Scholar
  85. Martel B, Devassine M, Grégorio C, Weltrowski M, Bourdonneau M, Morcellet M (2001) Preparation and sorption properties of a β-cyclodextrin-linked chitosan derivative. J Polym Sci A Polym Chem 39:169–176CrossRefGoogle Scholar
  86. Masykur A, Santosa SJ, dan Jumina DS (2016) Cross-linking of succinate-grafted chitosan and its effect on the capability to adsorb Pb(II) ion. IOP Conf Ser Mater Sci Eng 107:012014CrossRefGoogle Scholar
  87. Minko S (2008) Grafting on solid surfaces: “grafting to” and “grafting from” methods. In: Stamm M (ed) Polymer surfaces and interfaces: characterization, modification and applications. Springer, Berlin/Heidelberg, pp 215–234CrossRefGoogle Scholar
  88. Muddineti OS, Shah A, Rompicharla SVK, Ghosh B, Biswas S (2018) Cholesterol-grafted chitosan micelles as a nanocarrier system for drug-siRNA co-delivery to the lung cancer cells. Int J Biol Macromol 118:857–863PubMedCrossRefPubMedCentralGoogle Scholar
  89. Nayerossadat N, Maedeh T, Ali PA (2012) Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 1:27–27PubMedPubMedCentralCrossRefGoogle Scholar
  90. Nivethaa EAK, Dhanavel S, Narayanan V, Vasu CA, Stephen A (2015) An in vitro cytotoxicity study of 5-fluorouracil encapsulated chitosan/gold nanocomposites towards MCF-7 cells. RSC Adv 5(2):1024–1032CrossRefGoogle Scholar
  91. Nwe N, Furuike T, Tamura H (2009) The mechanical and biological properties of chitosan scaffolds for tissue regeneration templates are significantly enhanced by chitosan from Gongronella butleri. Materials 2(2):374–398PubMedCentralCrossRefGoogle Scholar
  92. O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95CrossRefGoogle Scholar
  93. Oh JK (2017) Polymers in drug delivery: chemistry and applications. Mol Pharm 14(8):2459–2459PubMedCrossRefPubMedCentralGoogle Scholar
  94. Pandey AR, Singh US, Momin M, Bhavsar C (2017) Chitosan: application in tissue engineering and skin grafting. J Polym Res 24(8):125CrossRefGoogle Scholar
  95. Periolatto M, Ferrero F, Vineis C, Rombaldoni F (2013) Multifunctional finishing of wool fabrics by chitosan UV-grafting: an approach. Carbohydr Polym 98(1):624–629PubMedCrossRefPubMedCentralGoogle Scholar
  96. Pillai O, Panchagnula R (2001) Polymers in drug delivery. Curr Opin Chem Biol 5(4):447–451CrossRefGoogle Scholar
  97. Qian F, Cui F, Ding J, Tang C, Yin C (2006) Chitosan graft copolymer nanoparticles for oral protein drug delivery: preparation and characterization. Biomacromolecules 7(10):2722–2727PubMedCrossRefPubMedCentralGoogle Scholar
  98. Radhakumary C, Nair P, Mathew S, Nair R (2007) Synthesis, characterization, and properties of poly(vinyl acetate)- and poly(vinyl alcohol)-grafted chitosan. J Appl Polym Sci 104(3):1852–1859CrossRefGoogle Scholar
  99. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27CrossRefGoogle Scholar
  100. Ribeiro JCV, Vieira RS, Melo IM, Araújo VMA, Lima V (2017) Versatility of chitosan-based biomaterials and their use as scaffolds for tissue regeneration. Sci World J 2017:8639898, 25CrossRefGoogle Scholar
  101. Ritschel WA (1989) Biopharmaceutic and pharmacokinetic aspects in the design of controlled release peroral drug delivery systems. Drug Dev Ind Pharm 15(6–7):1073–1103CrossRefGoogle Scholar
  102. Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, Saldaña-Koppel DA, Quiñones-Olvera LF (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int 2015:821279–821215PubMedPubMedCentralCrossRefGoogle Scholar
  103. Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition−fragmentation chain transfer (RAFT) polymerization. Macromolecules 38(25):10363–10372CrossRefGoogle Scholar
  104. Saber-Samandari S, Saber-Samandari S (2017) Biocompatible nanocomposite scaffolds based on copolymer-grafted chitosan for bone tissue engineering with drug delivery capability. Mater Sci Eng C 75:721–732CrossRefGoogle Scholar
  105. Saber-Samandari S, Yilmaz O, Yilmaz E (2012) Photoinduced graft copolymerization onto chitosan under heterogeneous conditions. J Macromol Sci A 49(7):591–598CrossRefGoogle Scholar
  106. Sahatsapan N, Rojanarata T, Ngawhirunpat T, Opanasopit P, Tonglairoum P (2018) 6-Maleimidohexanoic acid-grafted chitosan: a new generation mucoadhesive polymer. Carbohydr Polym 202:258–264PubMedCrossRefPubMedCentralGoogle Scholar
  107. Sangeeta K, Pal SR, Chavan NN, Annamalai KP (2018) Chitosan-based bionanocomposites for biomedical application. Bioinspired, Biomim Nanobiomater 7(4):219–227CrossRefGoogle Scholar
  108. Saranya N, Moorthi A, Saravanan S, Devi MP, Selvamurugan N (2011) Chitosan and its derivatives for gene delivery. Int J Biol Macromol 48(2):234–238PubMedCrossRefPubMedCentralGoogle Scholar
  109. Sarmento B, das Neves J (2012) Chitosan-based systems for biopharmaceuticals: delivery, targeting and polymer therapeutics. Wiley, ChichesterCrossRefGoogle Scholar
  110. Sharma S, Rajesh N (2017) Expeditious preparation of β-cyclodextrin grafted chitosan using microwave radiation for the enhanced palladium adsorption from aqueous waste and an industrial catalyst. J Environ Chem Eng 5:1927–1935CrossRefGoogle Scholar
  111. Shekhar Kushwaha C, Singh P, Shukla SK, Dubey GC (2018) Electrochemical urea sensing over polyaniline grafted chitosan copolymer. Mater Today Proc 5(7, Part 2):15253–15260CrossRefGoogle Scholar
  112. Shrestha S, Shrestha BK, Kim JI, Won Ko S, Park CH, Kim CS (2018) Electrodeless coating polypyrrole on chitosan grafted polyurethane with functionalized multiwall carbon nanotubes electrospun scaffold for nerve tissue engineering. Carbon 136:430–443CrossRefGoogle Scholar
  113. Shukla S, Mishra A, Arotiba O, Mamba B (2013) Chitosan-based Nanomaterials-A state-of-the-art review. Int J Biol Macromol 59:46–58CrossRefGoogle Scholar
  114. Singh RP (2011) Prospects of nanobiomaterials for biosensing. Int J Electrochem 2011:30CrossRefGoogle Scholar
  115. Singh DK, Ray AR (1998) Characterization of grafted chitosan films. Carbohydr Polym 36(2):251–255CrossRefGoogle Scholar
  116. Singh DK, Ray AR (2000) Biomedical applications of chitin, chitosan, and their derivatives. J Macromol Sci Part C 40(1):69–83CrossRefGoogle Scholar
  117. Singh V, Tripathi DN, Tiwari A, Sanghi R (2005) Microwave promoted synthesis of chitosan-graft-poly(acrylonitrile). J Appl Polym Sci 95(4):820–825CrossRefGoogle Scholar
  118. Suginta W, Khunkaewla P, Schulte A (2013) Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem Rev 113(7):5458–5479PubMedCrossRefPubMedCentralGoogle Scholar
  119. Sultana N., Izzat Hassan, M., & Mim Lim, M. (2015). Composite synthetic scaffolds for tissue engineering and regenerative medicineCrossRefGoogle Scholar
  120. Tan H, Ma R, Lin C, Liu Z, Tang T (2013) Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 14(1):1854–1869PubMedPubMedCentralCrossRefGoogle Scholar
  121. Thomson AK, Heyworth JS, Girschik J, Slevin T, Saunders C, Fritschi L (2014) Beliefs and perceptions about the causes of breast cancer: a case-control study. BMC Res Notes 7:558–558PubMedPubMedCentralCrossRefGoogle Scholar
  122. Tokuyasu K (1998) Structures, biological functions, and metabolism of chitin and chitosan. Kobunshi 47(6):386–389CrossRefGoogle Scholar
  123. Truong VX, Ablett MP, Gilbert HTJ, Bowen J, Richardson SM, Hoyland JA, Dove AP (2014) In situ-forming robust chitosan-poly(ethylene glycol) hydrogels prepared by copper-free azide–alkyne click reaction for tissue engineering. Biomater Sci 2(2):167–175CrossRefGoogle Scholar
  124. Uyama Y, Kato K, Ikada Y (1998) Surface modification of polymers by grafting. In: Galina H, Ikada Y, Kato K, Kitamaru R, Lechowicz J, Uyama Y, Wu C (eds) Grafting/characterization techniques/kinetic modeling. Springer, Berlin/Heidelberg, pp 1–39Google Scholar
  125. Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H (2016) Recent advances in biosensor technology for potential applications – an overview. Front Bioeng Biotechnol 4:11PubMedPubMedCentralCrossRefGoogle Scholar
  126. Vishnu KV, Ajeesh Kumar KK, Chatterjee NS, Lekshmi RGK, Sreerekha PR, Mathew S, Ravishankar CN (2018) Sardine oil loaded vanillic acid grafted chitosan microparticles, a new functional food ingredient: attenuates myocardial oxidative stress and apoptosis in cardiomyoblast cell lines (H9c2). Cell Stress Chaperones 23(2):213–222PubMedCrossRefPubMedCentralGoogle Scholar
  127. Vo T-S, Ngo D-H, Kim S-K (2012) Gallic acid-grafted chitooligosaccharides suppress antigen-induced allergic reactions in RBL-2H3 mast cells. Eur J Pharm Sci 47(2):527–533PubMedCrossRefPubMedCentralGoogle Scholar
  128. Vunain E, Mishra AK, Mamba BB (2017) 1 – Fundamentals of chitosan for biomedical applications. In: Jennings JA, Bumgardner JD (eds) Chitosan based biomaterials, vol 1. Woodhead Publishing, Cambridge, pp 3–30CrossRefGoogle Scholar
  129. Wang D, DanXu, Sun Y, Wu Y, Ma L, Duan J (2017) Synthesis, characterization and anticancer activity of tanshinone I grafted low molecular chitosan. Glycoconj J 34(1):3–12PubMedCrossRefPubMedCentralGoogle Scholar
  130. Wang J, Guo Z, Xiong J, Wu D, Li S, Tao Y, Qin Y, Kong Y (2019) Facile synthesis of chitosan-grafted beta-cyclodextrin for stimuli-responsive drug delivery. Int J Biol Macromol 125:941–947PubMedCrossRefPubMedCentralGoogle Scholar
  131. Witono J, Noordergraaf I-W, Heeres HJ, Janssen LPBM (2012) Graft copolymerization of acrylic acid to cassava starch—evaluation of the influences of process parameters by an experimental design method. Carbohydr Polym 90:1522–1529PubMedCrossRefPubMedCentralGoogle Scholar
  132. Witono JR, Noordergraaf IW, Heeres HJ, Janssen LPBM (2014) Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid. Carbohydr Polym 103:325–332PubMedCrossRefPubMedCentralGoogle Scholar
  133. Wong M-Y, Amini Horri B, Salamatinia B (2018) Chapter 8 – Grafted copolymerized chitosan and its applications as a green biopolymer. In: Thakur VK (ed) Biopolymer grafting. Elsevier, Saint Louis, pp 285–333CrossRefGoogle Scholar
  134. Wu T, Li Y, Lee DS (2017) Chitosan-based composite hydrogels for biomedical applications. Macromol Res 25(6):480–488CrossRefGoogle Scholar
  135. Wu D, Zhang Y, Xu X, Guo T, Xie D, Zhu R, Chen S, Ramakrishna S, He L (2018) RGD/TAT-functionalized chitosan-graft-PEI-PEG gene nanovector for sustained delivery of NT-3 for potential application in neural regeneration. Acta Biomater 72:266–277PubMedCrossRefPubMedCentralGoogle Scholar
  136. Xiao C, Gao F, Gao Y (2010) Controlled preparation of physically crosslinked chitosan-g-poly(vinyl alcohol) hydrogel. J Appl Polym Sci 117(5):2946–2950Google Scholar
  137. Xie W, Xu P, Liu Q (2001) Antioxidant activity of water-soluble chitosan derivatives. Bioorg Med Chem Lett 11(13):1699–1701PubMedCrossRefPubMedCentralGoogle Scholar
  138. Xu Y, Du Y (2003) Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm 250(1):215–226PubMedCrossRefPubMedCentralGoogle Scholar
  139. Xu XH, Ren GL, Cheng J, Liu Q, Li DG, Chen Q (2006) Self-assembly of polyaniline-grafted chitosan/glucose oxidase nanolayered films for electrochemical biosensor applications. J Mater Sci 41(15):4974–4977CrossRefGoogle Scholar
  140. Xu, C., Guan, S., Wang, B., Wang, S., Wang, Y., Sun, C., .Ma, X., Liu, T. (2018). Synthesis of protocatechuic acid grafted chitosan copolymer: structure characterization and in vitro neuroprotective potential. Int J Biol Macromol, 109, 1–11PubMedCrossRefPubMedCentralGoogle Scholar
  141. Yao K, Li J, Yao F, Yin Y (2016) Chitosan-based hydrogels: functions and applications. CRC Press, LondonCrossRefGoogle Scholar
  142. Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z (2016) Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater 2016:15Google Scholar
  143. Zhang S, Tezuka Y, Zhang Z, Li N, Zhang W, Zhu X (2018) Recent advances in the construction of cyclic grafted polymers and their potential applications. Polym Chem 9(6):677–686CrossRefGoogle Scholar
  144. Zhu X, Wu H, Yang J, Tong J, Yi J, Hu Z, Hu J, Wang T, Fan L (2015) Antibacterial activity of chitosan grafting nisin: preparation and characterization. React Funct Polym 91-92:71–76CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • S. Dhanavel
    • 1
  • Sheril Ann Mathew
    • 1
  • A. Stephen
    • 1
  1. 1.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia

Personalised recommendations