Advertisement

Research on the Diving Process of Trans-Media Aerial Underwater Vehicle

  • Li Ming Liang
  • Jun Hua Hu
  • Zong Cheng MaEmail author
  • Guo Ming Chen
  • Jun Yi Tan
Conference paper
  • 35 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1060)

Abstract

Trans-media aerial underwater vehicle (TMAUV) is a novel vehicle which is capable of locomotion in both air and water. In this paper, we address the morphing diving process of TMAUV which is ahead of entering into water. Dynamics of open loop diving is analyzed without considering morphing. The unique equilibrium is verified to be global asymptotic stability (GAS) in the domain of definition. Advises for designing TMAUV are concluded.

Keywords

TMAUV Unique equilibrium Basin of attraction Variable sweep 

References

  1. 1.
    Eastgate J, Goddard R. Submersible aircraft concept design study, ADA554344; 2010 August.Google Scholar
  2. 2.
    Drews-Jr LJ, Neto A, Campo FM. Hybrid unmanned aerial underwater vehicle: modeling and simulation. In: Intelligent robots and systems; 2014 September.Google Scholar
  3. 3.
    Robert S, Kovac M. A water jet thruster for an aquatic micro air vehicle. In: IEEE international conference on robotics and automation; 2015 May.Google Scholar
  4. 4.
    Yang J, Li Y, Feng J, Hu J, Liu A. Simulation and experimental research on trans-media vehicle water-entry motion characteristics at low speed. Plots One. 12(5).CrossRefGoogle Scholar
  5. 5.
    Seigler TM, Neal DA. Modeling and flight control of large-scale morphing aircraft. J Aircr. 2007;4(44):1077–87.CrossRefGoogle Scholar
  6. 6.
    Ma ZC, Feng JF, Hu JH, Liu A. Nonlinear robust adaptive NN control for variable-sweep aircraft. 2018;20(1):368–84.Google Scholar
  7. 7.
    An J, Yan M, Zhou W, Sun X, Yan Z, Qiu C. Aircraft dynamic response to variable wing sweep geometry. J Aircr. 2012;3(25):216–21.Google Scholar
  8. 8.
    Robert S, Mirko K. Fast aquatic escape with a jet thruster. IEEE/ASME Trans Mechatron. 2017;1(22):217–26.Google Scholar
  9. 9.
    Robert S, Ortega A, Mirko K. Wind and water tunnel testing of a morphing aquatic micro air vehicle. Interface Focus (accepted).Google Scholar
  10. 10.
    Khalil H. Nonlinear systems, vol. 3, 3rd ed. US, New York: Pearson Education; 2002.Google Scholar
  11. 11.
    Wang X, Chen G. A chaotic system with only one stable equilibrium. Commun Nonlinear Sci Numer Simulat. 2012;3(17):1264–72.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bhattaa P, Leonard NE. Nonlinear gliding stability and control for vehicles with hydrodynamic forcing. Automatica. 2008;5(44):1240–50.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Saberi A, Khalil H. Quadratic-type Lyapunov functions for singularly perturbed systems. IEEE Trans Autom Control. 1984;6(29):542–50.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Li Ming Liang
    • 1
  • Jun Hua Hu
    • 2
  • Zong Cheng Ma
    • 2
    • 3
    Email author
  • Guo Ming Chen
    • 2
  • Jun Yi Tan
    • 2
  1. 1.Luoyang Institute of Electro-Optical EquipmentAVICLuoyangChina
  2. 2.Aeronautics Engineering CollegeAir Force Engineering UniversityXi’anChina
  3. 3.School of Aviation Operations and ServicesAviation University of Air ForceChangchun, JilinChina

Personalised recommendations