Pharmacological Preconditioning
Abstract
In a clinical setting, pharmacological preconditioning is a practical way to protect the heart against ischemia-reperfusion injury. There are many kinds of drugs which may protect the heart against acute myocardial infarction when used before the onset of acute myocardial infarction. Some of these drugs show beneficial effects through the mechanism of ischemic preconditioning but others show beneficial effects through mechanisms different from ischemic preconditioning. Drugs such as the Katp channel opener, α-glucosidase inhibitors, DPP-IV inhibitor, thiazolidine antidiabetic, Ca-channel blockers, β-blockers, HMG-CoA reductase inhibitor, anti-platelets, ARBs, and ACE inhibitors show pharmacological preconditioning effects on the myocardial infarct size and cardiac function, and the precise mechanisms leading to the beneficial effects of these drugs are discussed.
Keywords
Pharmaciological preconditioning Myocardial infarct size Cardiac functionReferences
- 1.Ohno Y, Minatoguchi S, Uno Y, Kariya T, Arai M, Yamashita K, Fujiwara T, Fujiwara H. Nicorandil reduces myocardial infarct size by opening the KATP channel in rabbits. Int J Cardiol 1997; 62: 181–90.PubMedCrossRefPubMedCentralGoogle Scholar
- 2.Lu C, Minatoguchi S, Arai M, Wang N, Chen XH, Bao N, Kawamura I, Yasuda S, Kobayashi H, Wu DJ, Takemura G, Fujiwara H. Nicorandil improves post-ischemic myocardial dysfunction in association with opening the mitochondrial KATP channels in isolated rat hearts. Circ J 2006; 70: 1650–1654.PubMedCrossRefPubMedCentralGoogle Scholar
- 3.Matsubara T, Minatoguchi S, Matsuo H, Kayakawa K, Segawa T, Matsuno Y, Watanabe S, Arai M, Uno Y, Kawasaki M, Noda T, Takemura G, Nishigaki K, Fujiwara H. Three minute, but not one minute, ischemia and nicorandil have a preconditioning effect in patients with coronary artery diseases. J Am Coll Cardiol 2000; 35: 345–351.PubMedCrossRefPubMedCentralGoogle Scholar
- 4.The IONA Study Group. Effect of nicorandil on coronary events in patients with stable angina: the impact of Nicorandil in angina (IONA) randomized trial. Lancet 2002; 359: 1269–1275.CrossRefGoogle Scholar
- 5.Kitakaze M, Asakura M, Kim J, Shintani Y, Asanuma H, Hamasaki T, Seguchi O, Myoishi M, Minamino T, Ohara T, Nagai Y, Nanto S, Watanabe K, Fukuzawa S, Hirayama A, Nakamura N, Kimura K, Fujii K, Ishihara M, Saito Y, Tomoike H, Kitamura S, J-WIND investigators. Lancet 2007; 370: 1483–1493.PubMedCrossRefPubMedCentralGoogle Scholar
- 6.Kida M, Fujiwara H, Ishida M, Kawai C, Ohura M, Miura I, Yabuuchi Y. Ischemic preconditioning preserves creatine phosphate and intracellular pH. Circulation 1991; 84: 2495–2503.PubMedCrossRefPubMedCentralGoogle Scholar
- 7.Hulin B. New hypoglycemic agents. Prog Med Chem 1994; 31: 1–58.PubMedCrossRefPubMedCentralGoogle Scholar
- 8.Arai M, Minatoguchi S, Takemura G, Uno Y, Kariya T, Takatsu H, Fujiwara T, Higashioka M, Yoshikuni Y, Fujiwara H. N-methyl-deoxynojirimycin (MOR-14), an α-glucosidase inhibitor, markedly reduced infarct size in rabbit hearts. Circulation 1998; 97: 1290–1297.PubMedCrossRefPubMedCentralGoogle Scholar
- 9.Nishida Y, Minatoguchi S, Arai M, Takemura G, Uno Y, Hashimoto K, Wang N, Chen XH, Fujiwara T, Fujiwara H. N-methyl-1-deoxynojirimycin (MOR-14), an α-glucosidase inhibitor, markedly improves postischemic left ventricular dysfunction. Heart Vessel 2000; 15:268–273.CrossRefGoogle Scholar
- 10.Bollen M, Stalmans W. The anti-glycogenolytic action of 1-deoxynojirimycin results from a specific inhibition of the α-1,6-glucosidase activity of the debranching enzyme. Eur J Biochem 1989; 181: 775–780.PubMedCrossRefPubMedCentralGoogle Scholar
- 11.Minatoguchi S, Arai M, Uno Y, Kariya T, Nishida Y, Hashimoto K, Kawasaki M, Takemura G, Fujiwara T, Fujiwara H.A novel anti-diabetic drug, miglitol, markedly reduces myocardial infarct size in rabbits. Br J Pharmacol 1999; 128(8); 1667–1672.PubMedPubMedCentralCrossRefGoogle Scholar
- 12.Wang N, Minatoguchi S, Chen X, Uno Y, Arai M, Lu C, Takemura G, Fujiwara T, Fujiwara H. Antidiabetic drug miglitol inhibits myocardial apoptosis involving decreased hydroxyl radical production and Bax expression in an ischaemia/reperfusion rabbit heart. Br J Pharmacol 2004; 142: 983–990.PubMedPubMedCentralCrossRefGoogle Scholar
- 13.Iwasa M, Yamada Y, Kobayashi H, Yasuda S, Kawamura I, Sumi S, Shiraki T, Yamaki T, Ushikoshi H, Hattori A, Aoyama T, Nishigaki K, Takemura G, Fijiwata H, Minatoguchi S. Both stimulation of GLP-1 receptors and inhibition of glycogenolysis additively contribute to a protective effect of oral miglitol against ischaemia-reperfusion injury in rabbits. Br J Pharmacol 2011; 164, 119–131.PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Uno Y, Minatoguchi S, Arai M, Wang N, Chen XH, Hashimoto K, Lu C, Takemura G, Fujiwara H. The anti-diabetic drug miglitol is protective against anginal ischaemia through a mechanism independent of regional myocardial blood flow in the dog. Clin Exp Pharmacol Physiol 2005; 32: 805–810.PubMedCrossRefGoogle Scholar
- 15.Minatoguchi S, Wang N, Uno Y, Arai M, Hashimoto K, Hashimoto Y, Chen XH, Takemura G, Fujiwara H. Combination of miglitol, an-anti-diabetic drug, and nicorandil markedly reduces myocardial infarct size through opening the mitochondrial KATP channels in rabbits. Br J Pharmacol 2001; 133: 1041–1046.PubMedPubMedCentralCrossRefGoogle Scholar
- 16.Minatoguchi S, Zhang Z, Bao N, Kobayashi H, Yasuda S, Iwasa M, Sumi S, Kawamura I, Yamada Y, Nishigaki K, Takemura G, Fujiwara T, Fujiwara H. Acarbose reduces myocardial infarct size by preventing postprandial hyperglycemia and hydroxyl radical production and opening mitochondrial KATP channels in rabbits. J Cardiovasc Pharmacol 2009; 54: 25–30.PubMedCrossRefPubMedCentralGoogle Scholar
- 17.Zheng MY, Yang JH, Shan CY, Zhou HT, Xu YG, Wang Y, Ren HZ, Chang BC, Chen LM. Effects of 24-week treatment with acarbose on glucagon-like peptide 1 in newly diagnosed type 2 diabetic patients: a preliminary report. Cardiovasc Diabetol 2013 May 4; 12: 73. Doi: https://doi.org/10.1186/1475-2840-12-73.CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Iwasa M, Kobayashi H, Ysauda S, Kawamura I, Sumi S, Yamada Y, Shiraki T, Yamaki T, Ushikoshi H, Aoyama T, Nishigaki K, Takemura G, Fujiwara T, Fujiwara H, Minatoguchi S. Antidiabetic drug voglibose is protective against ischemia-reperfusion injury through glucagon-like peptide 1 receptors and the phosphoinositide 3-kinase-Akt-endothelial nitric oxide synthase pathway in rabbits. J Cardiovasc Pharmacol 2010; 55: 625–634.PubMedCrossRefPubMedCentralGoogle Scholar
- 19.Baba S, Iwasa M, Higashi K, Minatoguchi S, Yamada Y, Kanamori H, Kawasaki M, Nishigaki K, Minatoguchi S. Antidiabetic drug alogliptin protects the heart against ischemia-reperfusion injury through GLP-1 receptor-dependent and receptor-independent pathways involving nitric oxide production in rabbits. J Cardiovasc Pharmacol 706 (2017): 382-389Google Scholar
- 20.H Yki-Jarvinen. Thiazolidinediones. N Engl J Med 2004; 351: 1106–1118.PubMedCrossRefPubMedCentralGoogle Scholar
- 21.Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, Skene AM, Tan MH, Lefèbvre PJ, Murray GD, Standl E, Wilcox RG, Wilhelmsen L, Betteridge J, Birkeland K, Golay A, Heine RJ, Korányi L, Laakso M, Mokán M, Norkus A, Pirags V, Podar T, Scheen A, Scherbaum W, Schernthaner G, Schmitz O, Skrha J, Smith U, Taton J; PROactive Investigators. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (PROspective pioglitAzone clinical trial in macroVascular events): a randomised controlled trial. Lancet 2005; 366: 1279–1289.PubMedCrossRefPubMedCentralGoogle Scholar
- 22.Collins AR, Meehan WP, Kintscher U, Jackson S, Wakino S, Noh G, Palinski W, Hsueh WA, Law RE. Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2001; 21: 365–371.PubMedCrossRefPubMedCentralGoogle Scholar
- 23.Chen Z, Ishibashi K, Harada K, Shimano H, Nagai R, Yamada N. Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 2001; 21: 372–377.PubMedCrossRefPubMedCentralGoogle Scholar
- 24.Wayman N, Hattori Y, McDonald MC, Mota-Filipe H, Cuzzocrea S, Pisano B, Chatterjee PK, Thiemermann C. Ligands of the peroxisome proliferators-activated receptors (PPAR-γ and PPAR-α) reduce myocardial infarct size. FASEB J 2002; 16: 1027–1040.PubMedCrossRefPubMedCentralGoogle Scholar
- 25.Yasuda S, Kobayashi H, Iwasa M, Kawamura I, Sumi S, Narentuoya B, Yamaki T, Ushikoshi H, Nishigaki K, Nagashima K, Takemura G, Fujiwara T, Fujiwara H, Minatoguchi S. Anti-diabetic drug pioglitazone protects the heart via activation of PPAR-gamma receptors, PI3-kinase and eNOS pathway in a rabbit model of myocardial infarction. Am J Physiol Heart Circ Physiol 2009; 296: H1558-H1565.PubMedCrossRefPubMedCentralGoogle Scholar
- 26.Dohi Y, Kojima M, Sato K. Benidipine improves endothelial function in renal resistance arteries of hypertensive rats. Hypertension 28: 58–63, 1996.PubMedCrossRefPubMedCentralGoogle Scholar
- 27.Kitakaze M, Node K, Minamino T et al. A ca channel blocker, benidipine, increases coronary blood flow and attenuates the severity of myocardial ischemia via NO-dependent mechanism in dogs. J Am Coll Cardiol 33: 242–249, 1999.PubMedCrossRefPubMedCentralGoogle Scholar
- 28.Wang N, Minatoguchi S, Chen XH, Arai M, Uno Y, Lu CJ, Misao Y, Nagai H, Takemura G, Fujiwara H. Benidipine reduces myocardial infarct size involving reduction of hydroxyl radicals and production of protein kinase C-dependent nitric oxide in rabbits. J Cardiovasc Pharmacol 43: 747–757, 2004.PubMedCrossRefPubMedCentralGoogle Scholar
- 29.Ueyama H, Takahara A, Dohmoto H, Yoshimoto R, Inoue K, Akaike N. Blockade of N-type ca current by cilnidipine (FRC-8653) in acutely dissociated rat sympathetic neurons. Br J Pharmacol 122: 37–42, 1997.CrossRefGoogle Scholar
- 30.Hosono M, Fujii S, Hiruma T et al. Inhibitory effect of cilnidipine on vascular sympathetic neurotransmission and subsequent vasoconstriction in spontaneously hypertensive rats. Jpn J Pharmacol 69: 127–134, 1995.PubMedCrossRefPubMedCentralGoogle Scholar
- 31.Nagai H, Minatoguchi S, Chen XH, Wang N, Arai M, Uno Y, Lu C, Misao Y, Onogi H, Kobayashi H, Takemura G, Maruyama R, Fujiwara T, Fujiwara H. Cilnidipine, an N+L-type dihydropyridine ca channel blockers, suppresses the occurrence of ischemia/reperfusion arrhythmia in a rabbit model of myocardial infarction. Hypertens Res 28: 361–368, 2005.PubMedCrossRefPubMedCentralGoogle Scholar
- 32.van den Hoogen PC, Feskens EJ, Nagelkerke NJ, Menotti A, Nissinen A, Kromhout D. The relation between blood pressure and mortality due to coronary heart disease among men in different parts of the world. Seven Countries Study Research Group. N Engl J Med 342: 1–8, 2000.PubMedCrossRefPubMedCentralGoogle Scholar
- 33.Shimokawa H, Nagasawa K, Irie T, Egashira S, Egashira K, Sagara T, et al. Clinical characteristics and long-term prognosis of patients with variant angina. A comparative study between western and Japanese populations. Int J Cardiol 18: 331–349, 1988.PubMedCrossRefPubMedCentralGoogle Scholar
- 34.Beltrame JF, Sasayama S, Maseri A. Racial heterogeneity in coronary artery vasomotor reactivity: differences between Japanese and Caucasian patients. J Am Coll Cardiol 33: 1442–1452, 1999.PubMedCrossRefPubMedCentralGoogle Scholar
- 35.Pristipino C, Beltrame JF, Finocchiaro ML, Hattori R, Fujita M, Mongiardo R, et al. Major racial differences in coronary constrictor response between Japanese and Caucasians with recent myocardial infarction. Circulation 101: 1102–1108, 2000.PubMedCrossRefPubMedCentralGoogle Scholar
- 36.Yasue H, Takizawa A, Nagao M, Nishida S, Horie M, Kubota J, et al. Long-term prognosis for patients with variant angina and influential factors. Circulation 78: 1–9, 1988.PubMedCrossRefPubMedCentralGoogle Scholar
- 37.Io K, Minatoguchi S, Nishigaki K, Ojio S, Tanaka T, Segawa T, et al. Effects of benidipine and some other calcium channel blockers on the prognosis of patients with vasospastic angina. Cohort study with evaluation of the ergonovine coronary spasm induction test. Arzneimittel-forschung /Drug Res 57: 573–581, 2007.Google Scholar
- 38.Hillis LD, Braunwald E. Coronary-artery spasm. N Engl J Med 299: 695–702, 1978.PubMedCrossRefPubMedCentralGoogle Scholar
- 39.Maseri A, Severi S, Nes MD, L'Abbate A, Chierchia S, Marzilli M, et al. “Variant” angina: one aspect of a continuous spectrum of vasospastic myocardial ischemia. Pathogenetic mechanisms, estimated incidence and clinical and coronary arteriographic findings in 138 patients. Am J Cardiol 42: 1019–1035, 1978.PubMedCrossRefPubMedCentralGoogle Scholar
- 40.Ito A, Fukumoto Y, Shimokawa H. Changing characteristics of patients with vasospastic angina in the era of new calcium channel blockers. J Cardiovasc Pharmacol 44: 480–485, 2004.PubMedCrossRefPubMedCentralGoogle Scholar
- 41.Shinozaki K, Suzuki M, Ikebuchi M, Takaki H, Hara Y, Tsushima M, et al. Insulin resistance associated with compensatory hyperinsulinemia as an independent risk factor for vasospastic angina. Circulation 92: 1749–1757, 1995.PubMedCrossRefPubMedCentralGoogle Scholar
- 42.Yamagishi M, Ito K, Tsutsui H, Miyazaki S, Goto Y, Nagaya N, et al. Lesion severity and hypercholesterolemia determine long-term prognosis of vasospastic angina treated with calcium channel antagonists. Circ J 67: 1029–1035, 2003.PubMedCrossRefPubMedCentralGoogle Scholar
- 43.Waters DD, Miller DD, Szlachcic J, Bouchard A, Methe M, Kreeft J, et al. Factors influencing the long-term prognosis of treated patients with variant angina. Circulation 68: 258–265, 1983.PubMedCrossRefPubMedCentralGoogle Scholar
- 44.Mark DB, Califf RM, Morris KG, Harrell FE Jr, Pryor DB, Hlatky MA, et al. Clinical characteristics and long-term survival of patients with variant angina. Circulation 1984; 69: 880–888.PubMedCrossRefPubMedCentralGoogle Scholar
- 45.Schroeder JS, Lamb IH, Bristow MR, Ginsburg R, Hung J, McAuley BJ. Prevention of cardiovascular events in variant angina by long-term diltiazem therapy. J Am Coll Cardiol 1983; 1: 1507–1511.PubMedCrossRefPubMedCentralGoogle Scholar
- 46.Nishigaki K, Inoue Y, Yamanouchi Y, Fukumoto Y, Yasuda S, Sueda S, Urata H, Shimokawa H, Minatoguchi S. Prognostic effect of calcium channel blockers in patients with vasospastic angina – a meta analysis. Circ J 2010; 74: 1943–1950.PubMedCrossRefPubMedCentralGoogle Scholar
- 47.Karasawa A, Kubo K. Calcium antagonistic effects and the in vitro duration of actions of KW-3049, a new 1,4-dihydropyridine derivative, in isolated canine coronary arteries. Jpn J Pharmacol 1988; 47: 35-44PubMedCrossRefPubMedCentralGoogle Scholar
- 48.Moriyama T, Karasawa A. Cardiovascular effects of benidipine and amlodipine in isolated tissues and anesthetized dogs. Biol Pharm Bull 1994; 17: 1468-1471PubMedCrossRefPubMedCentralGoogle Scholar
- 49.Suzuki H, Yokoyama K, Akimoto Y, Daida H. Clinical efficacy of benidipine for vasospastic angina pectoris. Arzneimittel-forschung / Drug Res 2007; 57: 20-25Google Scholar
- 50.Miwa Y, Masai H, Shimizu M. Differential effects of calcium-channel blockers on vascular endothelial function in patients with coronary spastic angina. Circ J 2009; 73: 713-717PubMedCrossRefPubMedCentralGoogle Scholar
- 51.Makino H, Aoki M, Hashiya N, Yamasaki K, Shimizu H, Miwa K, Ogihara T, Morishita R. A calcium-channel blocker, benidipine, improves forearm reactive hyperemia in patients with essential hypertension. Blood Press 2005; Suppl 1: 39-44CrossRefGoogle Scholar
- 52.Kita T, Suzuki Y, Eto T, Kitamura K. Long-term anti-hypertensive therapy with benidipine improves arterial stiffness over blood pressure lowering. Hypertens Res 2005; 28: 959-964PubMedCrossRefPubMedCentralGoogle Scholar
- 53.Tolvanen JP, Wu X, Kahonen M, Sallinen K, Makynen H, Pekki A et al. Effect of celiprolol therapy on arterial dilatation in experimental hypertension. Br J Pharmacol 1996; 119: 1137–1144.PubMedPubMedCentralCrossRefGoogle Scholar
- 54.Asanuma H, Node K, Minamino T, Sanada S, Takashima S, Ueda Y, et al. Celiprolol increases coronary blood flow and reduces severity of myocardial ischemia via nitric oxide release. J Cardiovasc Pharmacol 2003; 41: 499–505.PubMedCrossRefPubMedCentralGoogle Scholar
- 55.Chen X, Minatoguchi S, Arai M, Wang N, Lu C, Narentuoya B, Uno Y, Misao Y, Takemura G, Fujiwara T, Fujiwara H. Celiprolol, a selective β1-blocker, reduces the infarct size through production of nitric oxide in a rabbit model of myocardial infarction. Circ J 2007; 71: 574–579.PubMedCrossRefPubMedCentralGoogle Scholar
- 56.Shephaerd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 1995; 333: 1301–1307.CrossRefGoogle Scholar
- 57.Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S) Lancet 1994; 344: 1383–1389.Google Scholar
- 58.Takemoto M, Liao JK. Pleiotrophic effect of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arterioscler Thromb Vasc Biol 2001; 21: 1712–1719.PubMedCrossRefGoogle Scholar
- 59.Bao N, Minatoguchi S, Kobayashi H, Yasuda S, Kawamura I, Iwasa M, Yamaki T, Sumi S, Misao Y, Arai M, Nishigaki K, Takemura G, Fujiwara T, Fujiwara H. Pravastatin reduces myocardial infarct size via increasing protein kinase C-dependent nitric oxide, decreasing oxyradicals and opening the mitochondrial adenosine triphosphate-sensitive potassium channels in rabbits. Circ J 2007; 71: 1622–1628.PubMedCrossRefGoogle Scholar
- 60.Bao N, Ushikoshi H, Kobayashi H, Yasuda S, Kawamura I, Iwasa M, Yamaki T, Sumi S, Nagashima K, Aoyama T, Kawasaki M, Nishigaki K, Takemura G, Minatoguchi S. Simvastatin reduces myocardial infarct size via increased nitric oxide production in normocholesterolemic rabbits. J Cardiol 2009; 53: 102–107.PubMedCrossRefPubMedCentralGoogle Scholar
- 61.Nakamura H, Arakawa K, Itakura H, Kitabatake A, Goto Y, Toyota T, Nakaya N, Nishimoto S, Muranaka M, Yamamoto A, Mizuno K, Ohashi Y: MEGA Study Group. Primary prevention of cardiovascular disease with pravastatin in Japan (MEGA study): a prospective randomized controlled trial. Lancet 2006; 368: 1155–1163.PubMedCrossRefPubMedCentralGoogle Scholar
- 62.Vanhoutte PM. Serotonin, hypertension and vascular disease. Neth J Med 1991; 38: 35–42.PubMedPubMedCentralGoogle Scholar
- 63.Spigset O, Mjorndal T. Serotonin 5-HT2A receptor binding in platelets from healthy subjects as studied by [3H]-lysergic acid diethylamide ([3H]-LSD): intra- and interindividual variability. Neuropsychopharmacology 1997; 16: 285–293.PubMedCrossRefPubMedCentralGoogle Scholar
- 64.Banes A, Florian JA, Watts SW. Mechanisms of 5-hydroxytryptamine (2A) receptor activation of the mitogen-activated protein kinase pathway in vascular smooth muscle. J Pharmacol Exp Ther 1999; 291: 1179–1187.PubMedPubMedCentralGoogle Scholar
- 65.Cerrito F, Lazzaro MP, Gaudio E, Arminio P, Aloisi G. 5-HT2 receptors and serotonin release: their role in human platelet aggregation. Life Sci 1993; 53: 209–215.PubMedCrossRefPubMedCentralGoogle Scholar
- 66.Shimizu Y, Minatoguchi S, Hashimoto K, Uno Y, Arai M, Wang N, Chen X, Lu C, Takemura G, Shimomura M, Fujiwara T, Fujiwara H. The role of serotonin in ischemic cellular damage and the infarct size-reducing effect of sarpogrelate, a 5-hydroxytryptamine-2 receptor blocker, in rabbit hearts. J Am Coll Cardiol 2002; 40: 1347–1355.PubMedCrossRefPubMedCentralGoogle Scholar
- 67.Kimura Y, Tami T, Kanabe T, Watanabe K. Effects of cilostazol on platelet aggregation and experimental thrombosis. Arzneim Forsch 1985; 35: 1144–1149.Google Scholar
- 68.Tanaka K, Gotoh F, Fukuuchi Y et al. Effects of a selective inhibition of cyclic AMP phosphodiesterase on the pial microcirculation in feline cerebral ischemia. Stroke 1989; 20: 668–763.PubMedCrossRefPubMedCentralGoogle Scholar
- 69.Bai YM, Murakami H, Iwasa M, Sumi S, Yamada Y, Ushikoshi H, Aoyama T, Nishigaki K, Takemura G, Uno B, Minatoguchi S. Cilostazol protects the heart against ischaemia reperfusion injury in a rabbit model of myocardial infarction; focus on adenosine, nitric and mitochondrial KATP channels. Clin Exp Pharmacol Physiol 2011; 38: 658–665.PubMedCrossRefPubMedCentralGoogle Scholar
- 70.Miki T, Miura T, Ura N et al. Captopril potentiates the myocardial infarct size-limiting effect of ischemic preconditioning through bradykinin B2 receptor activatoion. J Am Coll Cardiol 1996; 28: 1616–1622.PubMedCrossRefPubMedCentralGoogle Scholar
- 71.Jaberanasari MT, Baxter GF, Muller CA et al. Angiotensin-converting enzyme inhibition enhances a subthreshold stimulus to elicit delayed preconditioning I pig myocardium. J Am Coll Cardiol 2001; 37: 1996–2001.CrossRefGoogle Scholar
- 72.Lazar HL, Bao Y, Rivers S et al. High tissue affinity angiotensin-converting enzyme inhibitors improve endothelial function and reduce infarct size. Ann Thorac Surg 2001; 72: 548–554.PubMedCrossRefPubMedCentralGoogle Scholar
- 73.Chen XH, Minatoguchi S, Wang N, Arai M, Lu C, Uno Y, Misao Y, Takemura G, Fujiwara H. Quinaprilat reduces myocardial infarct size involving nitric oxide production and mitochondrial KATP channel in rabbits. J Cardiovasc Pharmacol 2003; 41: 938–945.PubMedCrossRefPubMedCentralGoogle Scholar