Advertisement

A Survey of Resource Management in Cloud and Edge Computing

  • Yuchao Zhang
  • Ke Xu
Chapter
  • 71 Downloads

Abstract

This chapter is to summarize the processing of the business, starting from the service access to the data center, to the data transmission control, to the server back-end communication, and the data synchronization service support, tracking the complete service flow of the data flow. And carry out comprehensive and in-depth research work for each of these links.

References

  1. 1.
    Mauve, M., Vogel, J., Hilt, V., Effelsberg, W.: Local-lag and timewarp: providing consistency for replicated continuous applications. IEEE Trans. Multimedia 6(1), 47–57 (2004)CrossRefGoogle Scholar
  2. 2.
    Shao, Z., Jin, X., Jiang, W., Chen, M., Chiang, M.: Intra-data-center traffic engineering with ensemble routing. In: INFOCOM, 2013 Proceedings IEEE, pp. 2148–2156. IEEE (2013)Google Scholar
  3. 3.
    Webb, S.D., Soh, S., Lau, W.: Enhanced mirrored servers for network games. In: Proceedings of the 6th ACM SIGCOMM Workshop on Network and System Support for Games, pp. 117–122. ACM (2007)Google Scholar
  4. 4.
    Vik, K.-H., Halvorsen, P., Griwodz, C.: Multicast tree diameter for dynamic distributed interactive applications. In: INFOCOM 2008. The 27th Conference on Computer Communications IEEE. IEEE (2008)Google Scholar
  5. 5.
    Guo, J., Liu, F., Zeng, D., Lui, J.C., Jin, H.: A cooperative game based allocation for sharing data center networks. In: INFOCOM, 2013 Proceedings IEEE, pp. 2139–2147. IEEE (2013)Google Scholar
  6. 6.
    Xu, K., Zhang, Y., Shi, X., Wang, H., Wang, Y., Shen, M.: Online combinatorial double auction for mobile cloud computing markets. In: Performance Computing and Communications Conference (IPCCC), 2014 IEEE International, pp. 1–8. IEEE (2014)Google Scholar
  7. 7.
    Seung, Y., Lam, T., Li, L.E., Woo, T.: Cloudflex: seamless scaling of enterprise applications into the cloud. In: INFOCOM, 2011 Proceedings IEEE, pp. 211–215. IEEE (2011)Google Scholar
  8. 8.
    Yue, K., Wang, X.-L., Zhou, A.-Y., et al.: Underlying techniques for web services: a survey. J. Softw. 15(3), 428–442 (2004)zbMATHGoogle Scholar
  9. 9.
    Zaki, Y., Chen, J., Potsch, T., Ahmad, T., Subramanian, L.: Dissecting web latency in ghana. In: Proceedings of the 2014 Conference on Internet Measurement Conference, pp. 241–248. ACM (2014)Google Scholar
  10. 10.
    Pujol, E., Richter, P., Chandrasekaran, B., Smaragdakis, G., Feldmann, A., Maggs, B.M., Ng, K.-C.: Back-office web traffic on the Internet. In: Proceedings of the 2014 Conference on Internet Measurement Conference, pp. 257–270. ACM (2014)Google Scholar
  11. 11.
    Wang, H., Shea, R., Ma, X., Wang, F., Liu, J.: On design and performance of cloud-based distributed interactive applications. In: 2014 IEEE 22nd International Conference on Network Protocols (ICNP), pp. 37–46. IEEE (2014)Google Scholar
  12. 12.
    Dogar, F.R., Karagiannis, T., Ballani, H., Rowstron, A.: Decentralized task-aware scheduling for data center networks. ACM SIGCOMM Comput. Commun. Rev. 44, 431–442 (2014)CrossRefGoogle Scholar
  13. 13.
    Alizadeh, M., Greenberg, A., Maltz, D.A., Padhye, J., Patel, P., Prabhakar, B., Sengupta, S., Sridharan, M.: Data center TCP (DCTCP). ACM SIGCOMM Comput. Commun. Rev. 41(4), 63–74 (2011)CrossRefGoogle Scholar
  14. 14.
    Vamanan, B., Hasan, J., Vijaykumar, T.: Deadline-aware datacenter TCP (D2TCP). ACM SIGCOMM Comput. Commun. Rev. 42(4), 115–126 (2012)CrossRefGoogle Scholar
  15. 15.
    Wilson, C., Ballani, H., Karagiannis, T., Rowtron, A.: Better never than late: meeting deadlines in datacenter networks. ACM SIGCOMM Comput. Commun. Rev. 41(4), 50–61 (2011). ACMGoogle Scholar
  16. 16.
    Hong, C.-Y., Caesar, M., Godfrey, P.: Finishing flows quickly with preemptive scheduling. ACM SIGCOMM Comput. Commun. Rev. 42(4), 127–138 (2012)CrossRefGoogle Scholar
  17. 17.
    Dukkipati, N., McKeown, N.: Why flow-completion time is the right metric for congestion control. ACM SIGCOMM Comput. Commun. Rev. 36(1), 59–62 (2006)CrossRefGoogle Scholar
  18. 18.
    Alizadeh, M., Yang, S., Sharif, M., Katti, S., McKeown, N., Prabhakar, B., Shenker, S.: pFabric: minimal near-optimal datacenter transport. ACM SIGCOMM Comput. Commun. Rev. 43(4), 435–446 (2013). ACMGoogle Scholar
  19. 19.
    Zhang, H.: More load, more differentiation – a design principle for deadline-aware flow control in DCNS. In: INFOCOM, 2014 Proceedings IEEE. IEEE (2014)Google Scholar
  20. 20.
    Shen, M., Gao, L., Xu, K., Zhu, L.: Achieving bandwidth guarantees in multi-tenant cloud networks using a dual-hose model. In: 2014 IEEE 33rd International Performance Computing and Communications Conference (IPCCC), pp. 1–8. IEEE (2014)Google Scholar
  21. 21.
    Xu, K., Zhang, Y., Shi, X., Wang, H., Wang, Y., Shen, M.: Online combinatorial double auction for mobile cloud computing markets. In: 2014 IEEE 33rd International Performance Computing and Communications Conference (IPCCC), pp.1–8. IEEE (2014)Google Scholar
  22. 22.
    Gavish, B., Pirkul, H.: Computer and database location in distributed computer systems. IEEE Trans. Comput. (7), 583–590 (1986)CrossRefGoogle Scholar
  23. 23.
    Gavish, B., Pirkul, H.: Algorithms for the multi-resource generalized assignment problem. Manag. Sci. 37(6), 695–713 (1991)CrossRefzbMATHGoogle Scholar
  24. 24.
    Ross, G.T., Soland, R.M.: A branch and bound algorithm for the generalized assignment problem. Math. Program. 8(1), 91–103 (1975)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Oncan, T.: A survey of the generalized assignment problem and its applications. INFOR 45(3), 123–141 (2007)MathSciNetGoogle Scholar
  26. 26.
    Privault, C., Herault, L.: Solving a real world assignment problem with a metaheuristic. J. Heuristics 4(4), 383–398 (1998)CrossRefzbMATHGoogle Scholar
  27. 27.
    Mitrović-Minić, S., Punnen, A.P.: Local search intensified: very large-scale variable neighborhood search for the multi-resource generalized assignment problem. Discret. Optim. 6(4), 370–377 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Yagiura, M., Iwasaki, S., Ibaraki, T., Glover, F.: A very large-scale neighborhood search algorithm for the multi-resource generalized assignment problem. Discret. Optim. 1(1), 87–98 (2004)CrossRefzbMATHGoogle Scholar
  29. 29.
    Mazzola, J.B., Wilcox, S.P.: Heuristics for the multi-resource generalized assignment problem. Nav. Res. Logist. 48(6), 468–483 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Shtub, A., Kogan, K.: Capacity planning by the dynamic multi-resource generalized assignment problem (DMRGAP). Eur. J. Oper. Res. 105(1), 91–99 (1998)CrossRefzbMATHGoogle Scholar
  31. 31.
    Gavranović, H., Buljubašić, M.: An efficient local search with noising strategy for Google machine reassignment problem. Ann. Oper. Res. 242, 1–13 (2014)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Sharma, P., Chaufournier, L., Shenoy, P., Tay, Y.C.: Containers and virtual machines at scale: a comparative study. In: International Middleware Conference, p. 1 (2016)Google Scholar
  33. 33.
    Mann, Z.D., Szabó, M.: Which is the best algorithm for virtual machine placement optimization? Concurr. Comput. Pract. Exp. 29(7), e4083 (2017)CrossRefGoogle Scholar
  34. 34.
    Meng, X., Pappas, V., Zhang, L.: Improving the scalability of data center networks with traffic-aware virtual machine placement. In: INFOCOM, 2010 Proceedings IEEE, pp. 1–9 (2010)Google Scholar
  35. 35.
    Popa, L., Kumar, G., Chowdhury, M., Krishnamurthy, A., Ratnasamy, S., Stoica, I.: Faircloud: sharing the network in cloud computing. ACM SIGCOMM Comput. Commun. Rev. 42(4), 187–198 (2012)CrossRefGoogle Scholar
  36. 36.
    Lacurts, K., Deng, S., Goyal, A., Balakrishnan, H.: Choreo: network-aware task placement for cloud applications. In: Conference on Internet Measurement Conference, pp. 191–204 (2013)Google Scholar
  37. 37.
    Li, X., Wu, J., Tang, S., Lu, S.: Let’s stay together: towards traffic aware virtual machine placement in data centers. In: INFOCOM, 2014 Proceedings IEEE, pp. 1842–1850 (2014)Google Scholar
  38. 38.
    Ma, T., Wu, J., Hu, Y., Huang, W.: Optimal VM placement for traffic scalability using Markov chain in cloud data centre networks. Electron. Lett. 53(9), 602–604 (2017)CrossRefGoogle Scholar
  39. 39.
    Zhao, Y., Huang, Y., Chen, K., Yu, M., Wang, S., Li, D.S.: Joint VM placement and topology optimization for traffic scalability in dynamic datacenter networks. Comput. Netw. 80, 109–123 (2015)CrossRefGoogle Scholar
  40. 40.
    Rai, A., Bhagwan, R., Guha, S.: Generalized resource allocation for the cloud. In: ACM Symposium on Cloud Computing, pp. 1–12 (2012)Google Scholar
  41. 41.
    Wang, L., Zhang, F., Aroca, J.A., Vasilakos, A.V., Zheng, K., Hou, C., Li, D., Liu, Z.: Greendcn: a general framework for achieving energy efficiency in data center networks. IEEE J. Sel. Areas Commun. 32(1), 4–15 (2013)CrossRefGoogle Scholar
  42. 42.
    Rui, L., Zheng, Q., Li, X., Jie, W.: A novel multi-objective optimization scheme for rebalancing virtual machine placement. In: IEEE International Conference on Cloud Computing, pp. 710–717 (2017)Google Scholar
  43. 43.
    Gu, L., Zeng, D., Guo, S., Xiang, Y., Hu, J.: A general communication cost optimization framework for big data stream processing in geo-distributed data centers. IEEE Trans. Comput. 65(1), 19–29 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  44. 44.
    Shen, M., Xu, K., Li, F., Yang, K., Zhu, L., Guan, L.: Elastic and efficient virtual network provisioning for cloud-based multi-tier applications. In: 2015 44th International Conference on Parallel Processing (ICPP), pp. 929–938. IEEE (2015)Google Scholar
  45. 45.
    Wang, T., Xu, H., Liu, F.: Multi-resource load balancing for virtual network functions. In: IEEE International Conference on Distributed Computing Systems (2017)Google Scholar
  46. 46.
    Taleb, T., Bagaa, M., Ksentini, A.: User mobility-aware virtual network function placement for virtual 5G network infrastructure. In: IEEE International Conference on Communications, pp. 3879–3884 (2016)Google Scholar
  47. 47.
    Mehraghdam, S., Keller, M., Karl, H.: Specifying and placing chains of virtual network functions. In: 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet), pp. 7–13. IEEE (2014)Google Scholar
  48. 48.
    Kawashima, K., Otoshi, T., Ohsita, Y., Murata, M.: Dynamic placement of virtual network functions based on model predictive control. In: NOMS 2016 – 2016 IEEE/IFIP Network Operations and Management Symposium, pp. 1037–1042 (2016)Google Scholar
  49. 49.
    Marotta, A., Kassler, A.: A power efficient and robust virtual network functions placement problem. In: Teletraffic Congress, pp. 331–339 (2017)Google Scholar
  50. 50.
    Addis, B., Belabed, D., Bouet, M., Secci, S.: Virtual network functions placement and routing optimization. In: IEEE International Conference on Cloud NETWORKING, pp. 171–177 (2015)Google Scholar
  51. 51.
    Wang, F., Ling, R., Zhu, J., Li, D.: Bandwidth guaranteed virtual network function placement and scaling in datacenter networks. In: IEEE International Performance Computing and Communications Conference, pp. 1–8 (2015)Google Scholar
  52. 52.
    Ghaznavi, M., Khan, A., Shahriar, N., Alsubhi, K., Ahmed, R., Boutaba, R.: Elastic virtual network function placement. In: IEEE International Conference on Cloud Networking (2015)Google Scholar
  53. 53.
    Bhamare, D., Samaka, M., Erbad, A., Jain, R., Gupta, L., Chan, H.A.: Optimal virtual network function placement in multi-cloud service function chaining architecture. Comput. Commun. 102(C), 1–16 (2017)CrossRefGoogle Scholar
  54. 54.
    Zhang, Q., Xiao, Y., Liu, F., Lui, J.C.S., Guo, J., Wang, T.: Joint optimization of chain placement and request scheduling for network function virtualization. In: IEEE International Conference on Distributed Computing Systems, pp. 731–741 (2017)Google Scholar
  55. 55.
    Taleb, T., Bagaa, M., Ksentini, A.: User mobility-aware virtual network function placement for virtual 5G network infrastructure. In: 2015 IEEE International Conference on Communications (ICC), pp. 3879–3884. IEEE (2015)Google Scholar
  56. 56.
    Laghrissi, A., Taleb, T., Bagaa, M., Flinck, H.: Towards edge slicing: VNF placement algorithms for a dynamic & realistic edge cloud environment. In: 2017 IEEE Global Communications Conference, pp. 1–6. IEEE (2017)Google Scholar
  57. 57.
    Prados, M.B.J., Laghrissi, A., Taleb, A.T., Taleb, T., Bagaa, M., Flinck, H.: A queuing based dynamic auto scaling algorithm for the LTE EPC control plane. In: 2018 IEEE Global Communications Conference, pp. 1–6. IEEE (2018)Google Scholar
  58. 58.
    Bagaa, M., Taleb, T., Ksentini, A.: Service-aware network function placement for efficient traffic handling in carrier cloud. In: 2014 IEEE Wireless Communications and Networking Conference (WCNC), pp. 2402–2407. IEEE (2014)Google Scholar
  59. 59.
    Bagaa, M., Dutra, D.L.C., Addad, R.A., Taleb, T., Flinck, H.: Towards modeling cross-domain network slices for 5G. In: 2018 IEEE Global Communications Conference, pp. 1–6. IEEE (2018)Google Scholar
  60. 60.
    Bagaa, M., Taleb, T., Laghrissi, A., Ksentini, A.: Efficient virtual evolved packet core deployment across multiple cloud domains. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6. IEEE (2018)Google Scholar
  61. 61.
    Zhang, R., Zhong, A.-M., Dong, B., Tian, F., Li, R.: Container-VM-PM architecture: a novel architecture for docker container placement. In: International Conference on Cloud Computing, pp. 128–140. Springer (2018)Google Scholar
  62. 62.
    Piraghaj, S.F., Dastjerdi, A.V., Calheiros, R.N., Buyya, R.: A framework and algorithm for energy efficient container consolidation in cloud data centers. In: 2015 IEEE International Conference on Data Science and Data Intensive Systems (DSDIS), pp. 368–375. IEEE (2015)Google Scholar
  63. 63.
    Dong, Z., Zhuang, W., Rojas-Cessa, R.: Energy-aware scheduling schemes for cloud data centers on google trace data. In: 2014 IEEE Online Conference on Green Communications (OnlineGreencomm), pp. 1–6. IEEE (2014)Google Scholar
  64. 64.
    Shi, T., Ma, H., Chen, G.: Energy-aware container consolidation based on PSO in cloud data centers. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)Google Scholar
  65. 65.
    Mao, Y., Oak, J., Pompili, A., Beer, D., Han, T., Hu, P.: Draps: dynamic and resource-aware placement scheme for docker containers in a heterogeneous cluster. In: 2017 IEEE 36th International Performance Computing and Communications Conference (IPCCC), pp. 1–8. IEEE (2017)Google Scholar
  66. 66.
    Nardelli, M., Hochreiner, C., Schulte, S.: Elastic provisioning of virtual machines for container deployment. In: Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion, pp. 5–10. ACM (2017)Google Scholar
  67. 67.
    Qiu, Y.: Evaluating and improving LXC container migration between cloudlets using multipath TCP. Ph.D. dissertation, Carleton University, Ottawa (2016)CrossRefGoogle Scholar
  68. 68.
    Machen, A., Wang, S., Leung, K.K., Ko, B.J., Salonidis, T.: Live service migration in mobile edge clouds. IEEE Wirel. Commun. 25(1), 140–147 (2018)CrossRefGoogle Scholar
  69. 69.
    Pickartz, S., Eiling, N., Lankes, S., Razik, L., Monti, A.: Migrating Linux containers using CRIU. In: International Conference on High Performance Computing, pp. 674–684. Springer (2016)Google Scholar
  70. 70.
    Ma, L., Yi, S., Carter, N., Li, Q.: Efficient live migration of edge services leveraging container layered storage. IEEE Trans. Mob. Comput. 18, 2020–2033 (2018)CrossRefGoogle Scholar
  71. 71.
    Ma, L., Yi, S., Li, Q.: Efficient service handoff across edge servers via docker container migration. In: Proceedings of the Second ACM/IEEE Symposium on Edge Computing, p. 11. ACM (2017)Google Scholar
  72. 72.
    Nadgowda, S., Suneja, S., Bila, N., Isci, C.: Voyager: complete container state migration. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 2137–2142. IEEE (2017)Google Scholar
  73. 73.
    Li, P., Nie, H., Xu, H., Dong, L.: A minimum-aware container live migration algorithm in the cloud environment. Int. J. Bus. Data Commun. Netw. (IJBDCN) 13(2), 15–27 (2017)Google Scholar
  74. 74.
    Guo, Y., Yao, W.: A container scheduling strategy based on neighborhood division in micro service. In: NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium, pp. 1–6. IEEE (2018)Google Scholar
  75. 75.
    Kaewkasi, C., Chuenmuneewong, K.: Improvement of container scheduling for docker using ant colony optimization. In: 2017 9th International Conference on Knowledge and Smart Technology (KST), pp. 254–259. IEEE (2017)Google Scholar
  76. 76.
    Xu, X., Yu, H., Pei, X.: A novel resource scheduling approach in container based clouds. In: 2014 IEEE 17th International Conference on Computational Science and Engineering (CSE), pp. 257–264. IEEE (2014)Google Scholar
  77. 77.
    Zhang, X., Liu, J., Li, B., Yum, Y.-S.: CoolStreaming/DONet: a data-driven overlay network for peer-to-peer live media streaming. In: INFOCOM, vol. 3, pp. 2102–2111. IEEE (2005)Google Scholar
  78. 78.
  79. 79.
  80. 80.
  81. 81.
  82. 82.
    Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy, S., Shenker, S., Stoica, I., Yu, H.: Opendht: a public DHT service and its uses. In: ACM SIGCOMM, vol. 35, pp. 73–84 (2005)Google Scholar
  83. 83.
    Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable blockchain protocol. In: NSDI (2016)Google Scholar
  84. 84.
    Zhu, W., Luo, C., Wang, J., Li, S.: Multimedia cloud computing. IEEE Signal Process. Mag. 28(3), 59–69 (2011)CrossRefGoogle Scholar
  85. 85.
    Sripanidkulchai, K., Maggs, B., Zhang, H.: An analysis of live streaming workloads on the Internet. In: IMC, pp. 41–54. ACM (2004)Google Scholar
  86. 86.
    Kostić, D., Rodriguez, A., Albrecht, J., Vahdat, A.: Bullet: high bandwidth data dissemination using an overlay mesh. ACM SOSP 37(5), 282–297 (2003). ACMGoogle Scholar
  87. 87.
    Rodriguez, A., Albrecht, J., Bhirud, A., Vahdat, A.: Using random subsets to build scalable network services. In: USITS, pp. 19–19 (2003)Google Scholar
  88. 88.
    Andreev, K., Maggs, B.M., Meyerson, A., Sitaraman, R.K.: Designing overlay multicast networks for streaming. In: SPAA, pp. 149–158 (2013)Google Scholar
  89. 89.
    Alizadeh, M., Greenberg, A., Maltz, D.A., Padhye, J., Patel, P., Prabhakar, B., Sengupta, S., Sridharan, M.: Data center TCP (DCTCP). In: ACM SIGCOMM, pp. 63–74 (2010)Google Scholar
  90. 90.
    Hong, C.Y., Caesar, M., Godfrey, P.B.: Finishing flows quickly with preemptive scheduling. ACM SIGCOMM Comput. Commun. Rev. 42(4), 127–138 (2012)CrossRefGoogle Scholar
  91. 91.
    Alizadeh, M., Edsall, T., Dharmapurikar, S., Vaidyanathan, R., Chu, K., Fingerhut, A., Lam, V.T., Matus, F., Pan, R., Yadav, N.: CONGA: distributed congestion-aware load balancing for datacenters. In: ACM SIGCOMM, pp. 503–514 (2014)Google Scholar
  92. 92.
    Zhu, Y., Eran, H., Firestone, D., Guo, C., Lipshteyn, M., Liron, Y., Padhye, J., Raindel, S., Yahia, M.H., Zhang, M.: Congestion control for large-scale RDMA deployments. ACM SIGCOMM 45(5), 523–536 (2015)CrossRefGoogle Scholar
  93. 93.
    Mittal, R., Lam, V.T., Dukkipati, N., Blem, E., Wassel, H., Ghobadi, M., Vahdat, A., Wang, Y., Wetherall, D., Zats, D.: TIMELY: RTT-based congestion control for the datacenter. In: ACM SIGCOMM, pp. 537–550 (2015)Google Scholar
  94. 94.
    Cho, I., Jang, K.H., Han, D.: Credit-scheduled delay-bounded congestion control for datacenters. In: ACM SIGCOMM, pp. 239–252 (2017)Google Scholar
  95. 95.
    Zhang, H., Zhang, J., Bai, W., Chen, K., Chowdhury, M.: Resilient datacenter load balancing in the wild. In: ACM SIGCOMM, pp. 253–266 (2017)Google Scholar
  96. 96.
    Nagaraj, K., Bharadia, D., Mao, H., Chinchali, S., Alizadeh, M., Katti, S.: Numfabric: fast and flexible bandwidth allocation in datacenters. In: ACM SIGCOMM, pp. 188–201 (2016)Google Scholar
  97. 97.
    Sivaraman, A., Cheung, A., Budiu, M., Kim, C., Alizadeh, M., Balakrishnan, H., Varghese, G., McKeown, N., Licking, S.: Packet transactions: high-level programming for line-rate switches. In: ACM SIGCOMM, pp. 15–28 (2016)Google Scholar
  98. 98.
    Chowdhury, M., Stoica, I.: Coflow: an application layer abstraction for cluster networking. In: ACM Hotnets. Citeseer (2012)Google Scholar
  99. 99.
    Zhang, H., Chen, L., Yi, B., Chen, K., Geng, Y., Geng, Y.: CODA: toward automatically identifying and scheduling coflows in the dark. In: ACM SIGCOMM, pp. 160–173 (2016)Google Scholar
  100. 100.
    Chen, Y., Alspaugh, S., Katz, R.H.: Design insights for MapReduce from diverse production workloads. California University Berkeley Department of Electrical Engineering and Computer Science, Technical Report (2012)CrossRefGoogle Scholar
  101. 101.
    Kavulya, S., Tan, J., Gandhi, R., Narasimhan, P.: An analysis of traces from a production MapReduce cluster. In: CCGrid, pp. 94–103. IEEE (2010)Google Scholar
  102. 102.
    Mishra, A.K., Hellerstein, J.L., Cirne, W., Das, C.R.: Towards characterizing cloud backend workloads: insights from Google compute clusters. ACM SIGMETRICS PER 37(4), 34–41 (2010)CrossRefGoogle Scholar
  103. 103.
    Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the Third ACM Symposium on Cloud Computing, p. 7. ACM (2012)Google Scholar
  104. 104.
    Sharma, B., Chudnovsky, V., Hellerstein, J.L., Rifaat, R., Das, C.R.: Modeling and synthesizing task placement constraints in Google compute clusters. In: SoCC, p. 3. ACM (2011)Google Scholar
  105. 105.
    Wilkes, J.: More Google cluster data. http://googleresearch.blogspot.com/2011/11/ (2011)
  106. 106.
    Zhang, Q., Hellerstein, J.L., Boutaba, R.: Characterizing task usage shapes in Google’s compute clusters. In: LADIS (2011)Google Scholar
  107. 107.
    Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer, J., Zhou, J., Zhu, M., et al.: B4: experience with a globally-deployed software defined WAN. ACM SIGCOMM 43(4), 3–14 (2013)CrossRefGoogle Scholar
  108. 108.
    Hong, C.-Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri, M., Wattenhofer, R.: Achieving high utilization with software-driven WAN. In: ACM SIGCOMM, pp. 15–26 (2013)Google Scholar
  109. 109.
    McKeown, N.: Software-defined networking. INFOCOM Keynote Talk 17(2), 30–32 (2009)Google Scholar
  110. 110.
    OpenFlow: Openflow specification. http://archive.openflow.org/wp/documents
  111. 111.
    McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., Turner, J.: Openflow: enabling innovation in campus networks. ACM SIGCOMM 38(2), 69–74 (2008)CrossRefGoogle Scholar
  112. 112.
    Roberts, S.: Control chart tests based on geometric moving averages. Technometrics 1(3), 239–250 (1959)CrossRefGoogle Scholar
  113. 113.
    Lucas, J.M., Saccucci, M.S.: Exponentially weighted moving average control schemes: properties and enhancements. Technometrics 32(1), 1–12 (1990)CrossRefMathSciNetGoogle Scholar
  114. 114.
    Adams, R.P., MacKay, D.J.: Bayesian online changepoint detection. arXiv preprint arXiv:0710.3742 (2007)Google Scholar
  115. 115.
    Page, E.: A test for a change in a parameter occurring at an unknown point. Biometrika 42(3/4), 523–527 (1955)CrossRefMathSciNetzbMATHGoogle Scholar
  116. 116.
    Desobry, F., Davy, M., Doncarli, C.: An online kernel change detection algorithm. IEEE Trans. Signal Process. 53(8), 2961–2974 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  117. 117.
    Lorden, G., et al.: Procedures for reacting to a change in distribution. Ann. Math. Stat. 42(6), 1897–1908 (1971)CrossRefMathSciNetzbMATHGoogle Scholar
  118. 118.
    Smith, A.: A Bayesian approach to inference about a change-point in a sequence of random variables. Biometrika 62(2), 407–416 (1975)CrossRefMathSciNetzbMATHGoogle Scholar
  119. 119.
    Stephens, D.: Bayesian retrospective multiple-changepoint identification. Appl. Stat. 43, 159–178 (1994)CrossRefzbMATHGoogle Scholar
  120. 120.
    Barry, D., Hartigan, J.A.: A Bayesian analysis for change point problems. J. Am. Stat. Assoc. 88(421), 309–319 (1993)MathSciNetzbMATHGoogle Scholar
  121. 121.
    Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4), 711–732 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  122. 122.
    Berger, D.S., Gland, P., Singla, S., Ciucu, F.: Exact analysis of TTL cache networks: the case of caching policies driven by stopping times. ACM SIGMETRICS Perform. Eval. Rev. 42(1), 595–596 (2014)CrossRefGoogle Scholar
  123. 123.
    Ferragut, A., Rodríguez, I., Paganini, F.: Optimizing TTL caches under heavy-tailed demands. ACM SIGMETRICS Perform. Eval. Rev. 44(1), 101–112 (2016). ACMGoogle Scholar
  124. 124.
    Basu, S., Sundarrajan, A., Ghaderi, J., Shakkottai, S., Sitaraman, R.: Adaptive TTL-based caching for content delivery. ACM SIGMETRICS Perform. Eval. Rev. 45(1), 45–46 (2017)CrossRefGoogle Scholar
  125. 125.
    Narayanan, A., Verma, S., Ramadan, E., Babaie, P., Zhang, Z.-L.: Deepcache: a deep learning based framework for content caching. In: Proceedings of the 2018 Workshop on Network Meets AI & ML, pp. 48–53. ACM (2018)Google Scholar
  126. 126.
    Mao, H., Netravali, R., Alizadeh, M.: Neural adaptive video streaming with pensieve. In: Proceedings of the Conference of the ACM Special Interest Group on Data Communication, pp. 197–210. ACM (2017)Google Scholar
  127. 127.
    Sadeghi, A., Sheikholeslami, F., Giannakis, G.B.: Optimal and scalable caching for 5G using reinforcement learning of space-time popularities. IEEE J. Sel. Top. Signal Process. 12(1), 180–190 (2018)CrossRefGoogle Scholar
  128. 128.
    Li, X., Wang, X., Wan, P.-J., Han, Z., Leung, V.C.: Hierarchical edge caching in device-to-device aided mobile networks: modeling, optimization, and design. IEEE J. Sel. Areas Commun. 36(8), 1768–1785 (2018)CrossRefGoogle Scholar
  129. 129.
    Ma, G., Wang, Z., Zhang, M., Ye, J., Chen, M., Zhu, W.: Understanding performance of edge content caching for mobile video streaming. IEEE J. Sel. Areas Commun. 35(5), 1076–1089 (2017)CrossRefGoogle Scholar
  130. 130.
    Drolia, U., Guo, K., Tan, J., Gandhi, R., Narasimhan, P.: Cachier: edge-caching for recognition applications. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 276–286. IEEE (2017)Google Scholar
  131. 131.
    Gabry, F., Bioglio, V., Land, I.: On energy-efficient edge caching in heterogeneous networks. IEEE J. Sel. Areas Commun. 34(12), 3288–3298 (2016)CrossRefGoogle Scholar
  132. 132.
    Lombardi, A., Hörnquist, M.: Controllability analysis of networks. Phys. Rev. E 75(5) Pt 2, 056110 (2007)Google Scholar
  133. 133.
    Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Controllability of complex networks. Nature 473(7346), 167 (2011)CrossRefGoogle Scholar
  134. 134.
    Yuan, Z., Zhao, C., Di, Z., Wang, W.X., Lai, Y.C.: Exact controllability of complex networks. Nat. Commun. 4(2447), 2447 (2013)CrossRefGoogle Scholar
  135. 135.
    Cornelius, S.P., Kath, W.L., Motter, A.E.: Realistic control of network dynamics. Nat. Commun. 4(3), 1942 (2013)CrossRefGoogle Scholar
  136. 136.
    Pasqualetti, F., Zampieri, S., Bullo, F.: Controllability metrics, limitations and algorithms for complex networks. IEEE Trans. Control Netw. Syst. 1(1), 40–52 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  137. 137.
    Francesco, S., Mario, D.B., Franco, G., Guanrong, C.: Controllability of complex networks via pinning. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 75(2), 046103 (2007)Google Scholar
  138. 138.
    Wang, W.X., Ni, X., Lai, Y.C., Grebogi, C.: Optimizing controllability of complex networks by minimum structural perturbations. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 85(2) Pt 2, 026115 (2012)Google Scholar
  139. 139.
    Gerla, M., Lee, E.K., Pau, G., Lee, U.: Internet of vehicles: from intelligent grid to autonomous cars and vehicular clouds. In: Internet of Things (2016)Google Scholar
  140. 140.
    Kaiwartya, O., Abdullah, A.H., Cao, Y., Altameem, A., Liu, X.: Internet of vehicles: motivation, layered architecture network model challenges and future aspects. IEEE Access 4, 5356–5373 (2017)CrossRefGoogle Scholar
  141. 141.
    Alam, K.M., Saini, M., Saddik, A.E.: Toward social Internet of vehicles: concept, architecture, and applications. IEEE Access 3, 343–357 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Yuchao Zhang
    • 1
  • Ke Xu
    • 2
  1. 1.Beijing University of Posts and TelecommBeijingChina
  2. 2.Tsinghua UniversityBeijingChina

Personalised recommendations