Privacy-Preserving Data Mining in Spatiotemporal Databases Based on Mining Negative Association Rules

  • K. S. RanjithEmail author
  • A. Geetha Mary
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1054)


In the real world, most of the entities are involved with space and time, from any starting point to the end point of the space. The conventional data mining process is extended to the mining knowledge of the spatiotemporal databases. The major knowledge is to mine the association rules in the spatiotemporal databases; the traditional approaches are not sufficient to do mining in the spatiotemporal databases. While mining the association rules, the privacy is the main concern. This paper proposed privacy preserved data mining technique for spatiotemporal databases based on the mining negative association rules and cryptography with low storage and communication cost. In the proposed approach first, the partial support for all the distributed sites is calculated, and then finally, the actual support was calculated to achieve privacy preserve data mining. The mathematical calculation was done and proved that this approach is best for mining association rules for spatiotemporal databases.


Data mining Association rules Privacy-preserving Spatiotemporal databases Distributed databases 


  1. 1.
    Getta, J.R., McKerrow, L., McKerrow, P.J.: The application of database mining techniques to data fusion in spatial databases. In: Proceeding of 1st Australian Data Fusion Symposium, pp. 135–140. IEEE (1996)Google Scholar
  2. 2.
    Sahu, A.K., Kumar, R., Rahim, N.: Mining negative association rules in distributed environment. In: Proceedings International Conference on Computational Intelligence and Communication Networks (CICN), pp. 934–937. IEEE (2015)Google Scholar
  3. 3.
    Zhang, X., Su, F., Du, Y., Shi, Y.: Association rule mining on spatio-temporal processes. In: Proceedings 4th International Conference on Wireless Communications, Networking and Mobile Computing, pp. 1–4. IEEE (2008)Google Scholar
  4. 4.
    Cheung, D.W., Ng, V.T., Fu, A.W., Fu, Y.: Efficient mining of association rules in distributed databases. IEEE Trans. Knowl. Data Eng. 1(6), 911–922 (1996)CrossRefGoogle Scholar
  5. 5.
    Neerugatti, V., Reddy, R.M.: A survey on secure connectivity techniques for internet of things environment. Int. J. Eng. Res. Comput. Sci. Eng. (IJERCSE) 4(3) (2017)Google Scholar
  6. 6.
    Cheung, D.W., Han, J., Ng, V.T., Fu, A.W., Fu, Y.: A fast distributed algorithm for mining association rules. In: Fourth International Conference on Parallel and Distributed Information Systems, pp. 31–42. IEEE (1996)Google Scholar
  7. 7.
    Chen, M.S., Han, J., Yu, P.S.: Data mining: an overview from a database perspective. IEEE Trans. Knowl. Data Eng. 8(6), 866–883 (1996)CrossRefGoogle Scholar
  8. 8.
    Abraham, T., Roddick, J.F.: Survey of spatio-temporal databases. GeoInformatica 3(1), 61–99 (1999)CrossRefGoogle Scholar
  9. 9.
    Wang, C., Huang, H., Li, H.: A fast distributed mining algorithm for association rules with item constraints. In: SMC 2000 Conference Proceedings. 2000 IEEE International Conference on Systems, Man and Cybernetics’ Cybernetics Evolving to Systems, Humans, Organizations, and Their Complex Interactions, vol. 3(1), pp. 1900–1905. IEEE (2000)Google Scholar
  10. 10.
    Verykios, V.S., Bertino, E., Fovino, I.N., Provenza, L.P., Saygin, Y., Theodoridis, Y.: State-of-the-art in privacy preserving data mining. ACM Sigmod Rec. 33(1), 50–57 (2004)CrossRefGoogle Scholar
  11. 11.
    Bertino, E., Fovino, I.N., Provenza, L.P.: A framework for evaluating privacy preserving data mining algorithms. Data Min. Knowl. Disc. 11(2), 121–154 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chang, C.C., Yeh, J.S., Li, Y.C.: Privacy-preserving mining of association rules on distributed databases (2006)Google Scholar
  13. 13.
    Kotsiantis, S., Kanellopoulos, D.: Association rules mining: A recent overview. GESTS Int. Trans. Comput. Sci. Eng. 32(1), 71–82 (2006)Google Scholar
  14. 14.
    Neerugatti, V., Reddy, R.M.: An introduction, reference models, applications, open challenges in Internet of Things. Int. J. Mod. Sci. Eng. Technol. (IJMSET) (2017)Google Scholar
  15. 15.
    Andrienko, G., Malerba, D., May, M., Teisseire, M.: Mining spatio-temporal data. J. Intell. Inf. Syst. 27(3), 187–190 (2006)CrossRefGoogle Scholar
  16. 16.
    Wang, L., Xie, K., Chen, T., Ma, X.: Efficient discovery of multilevel spatial association rules using partitions. Inf. Softw. Technol. 47(13), 829–840 (2005)CrossRefGoogle Scholar
  17. 17.
    Wang, J., Luo, Y., Zhao, Y., Le, J.: A survey on privacy preserving data mining. In: Proceeding First International Workshop on Database Technology and Applications, pp. 111–114. IEEE (2009) Google Scholar
  18. 18.
    Gurevich, A., Gudes, E.: Privacy preserving data mining algorithms without the use of secure computation or perturbation. In: Proceeding 10th International Database Engineering and Applications Symposium (IDEAS’06), pp. 121–128. IEEE (2006)Google Scholar
  19. 19.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings VLDB Conference, Santiago, pp. 487–499. IEEE (1994)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Computing Science and EngineeringVIT UniversityVelloreIndia

Personalised recommendations