Advertisement

Study and Analysis of Matrix Operations in RLNC Using Various Computing

  • I. Jothinayagan
  • S. J. Sumitha
  • Kinnera Bharath Kumar Sai
  • M. Rajasekhara BabuEmail author
Conference paper
  • 129 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1054)

Abstract

Random linear network coding gained its importance in recent days with its greater potential to enhance the performance of the IoT systems. But the challenging issue is the matrix multiplications and inversions involved in it. Nowadays, with increase in multimedia streaming formats, IoT devices like smartphones will try to make full use of heterogeneous multicore architectures, which are drawing everyone’s attention. The approach presented in this paper is the improvement of matrix operations through optimized operations on matrix blocks. We can schedule the operations on matrix blocks in the heterogeneous cores through directed acyclic graph (DAG). The utilization of computer technology to complete the task is known as computing. It is the process of using computer to complete a given goal-oriented task. Here, we make use of different types of computing in order to solve the problem of high computation of matrix operations. RLNC encoding and decoding achieved higher throughputs than already available approaches.

Keywords

Random linear network coding Matrix operations Parallel computing Directed acyclic graph 

References

  1. 1.
    Wunderlich, S., Cabrera, J., Fitzek, F.H.P., Reisslein, M.: Network coding in heterogeneous multicore IoT nodes with DAG scheduling of parallel matrix block operations. IEEE Internet Things J. 1–17 (2017)Google Scholar
  2. 2.
    Luszczek, P., Kurzak, J., Dongarra, J.: Looking back at dense linear algebra software. J. Parallel Distrib. Comput. 74(7), 2548–2560 (2014)CrossRefGoogle Scholar
  3. 3.
    Ho, T., Me´dard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.: A random linear network coding approach to multicast. IEEE Trans. Inf. Theor. 52(10), 4413–4430 (2006)Google Scholar
  4. 4.
    Yi, S., Hao, Z., Qin, Z., Li, Q.: Fog computing: platform and applications. In: Proceedings of 3rd IEEE Workshop Hot Topics Web System Technology, pp. 73–78 (2015)Google Scholar
  5. 5.
    Zhuo, G., Jia, Q., Guo, L., Li, M., Li, P.: Privacy-preserving verifiable set operation in big data for cloud-assisted mobile crowdsourcing. IEEE Internet Things J. 4(2), 572–582 (2017)CrossRefGoogle Scholar
  6. 6.
    Johnston, S., Apetroaie-Cristea, M., Scott, M., Cox, S.: Applicability of commodity, low cost, single board computers for Internet of Things devices. In: Proceedings of World Forum on Internet of Things, pp. 1–6 (2016)Google Scholar
  7. 7.
    Osanaiye, O., et al.: From cloud to fog computing: a review and a conceptual live vm migration framework. IEEE Access 5, 8284–8300 (2017)CrossRefGoogle Scholar
  8. 8.
    Kamilaris, A., Pitsillides, A.: Mobile phone computing and the internet of things: a survey. IEEE Internet Things J. 3(6), 885–898 (2016)CrossRefGoogle Scholar
  9. 9.
    Bondi, L., Baroffio, L., Cesana, M., Redondi, A., Tagliasacchi, M.: EZ-VSN: an open-source and flexible framework for visual sensor networks. IEEE Internet Things J. 3(5), 767–778 (2016)CrossRefGoogle Scholar
  10. 10.
    Huang, X., Ansari, N.: Content caching and distribution in smart grid enabled wireless networks. IEEE Internet Things J. 4(2), 513–520 (2017)CrossRefGoogle Scholar
  11. 11.
    Ho, T., M´edard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.: A random linear network coding approach to multicast. IEEE Trans. Inf. Theor. 52(10), 4413–4430 (2006)Google Scholar
  12. 12.
    Kolios, P., Panayiotou, C., Ellinas, G., Polycarpou, M.: Data-driven event triggering for IoT applications. IEEE Internet Things J. 3(6), 1146–1158 (2016)CrossRefGoogle Scholar
  13. 13.
    Chiang, M., Zhang, T.: Fog and IoT: an overview of research opportunities. IEEE Internet Things J. 3(6), 854–864 (2016)CrossRefGoogle Scholar
  14. 14.
    Sun, K., Zhang, H., Wu, D., Zhuang, H.: MPC-based delay-aware fountain codes for real-time video communication. IEEE Internet Things J. (in print) (2017)Google Scholar
  15. 15.
    Ahuja, S.P., Myers, J.R.: A survey on wireless grid computing. J. Supercomputer. 37(1), 3–21 (2006)CrossRefGoogle Scholar
  16. 16.
    Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(6), 637–646 (2016)CrossRefGoogle Scholar
  17. 17.
    Yi, S., Hao, Z., Qin, Z., Li, Q.: Fog computing: platform and applications. In: Proceedings of IEEE Hot Web, pp. 73–78 (2015)Google Scholar
  18. 18.
    Hong, H.-J., Fan, C.-L., Lin, Y.-C., Hsu, C.-H.: Optimizing cloud- based video crowdsensing. IEEE Internet Things J. 3(3), 299–313 (2016)CrossRefGoogle Scholar
  19. 19.
    Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)Google Scholar
  20. 20.
    Conti, M., Kumar, M.: Opportunities in opportunistic computing. Computing 43(1), 42–50 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • I. Jothinayagan
    • 1
  • S. J. Sumitha
    • 1
  • Kinnera Bharath Kumar Sai
    • 1
  • M. Rajasekhara Babu
    • 1
    Email author
  1. 1.School of Computer Science and Engineering—SCOPEVellore Institute of TechnologyVelloreIndia

Personalised recommendations