Reliability–Redundancy Allocation Using Random Walk Gray Wolf Optimizer

  • Shubham GuptaEmail author
  • Kusum Deep
  • Assif Assad
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1048)


From some past recent years, Swarm Intelligence (SI) based optimization algorithms have shown their impact in finding the efficient solutions of real-life application problems that occur in engineering, science, industry, and in various other fields. Gray Wolf Optimizer (GWO) is an efficient and popular optimizer in the area of SI to solve nonlinear complex optimization problems. GWO mimics the dominant leadership characteristic of gray wolves to catch the prey. But, like other stochastic search algorithms, GWO gets trapped in local optimums in some cases. Therefore in the present study, Random Walk Gray Wolf Optimizer (RW-GWO) is applied to determine—(1) the optimal redundancies to optimize the system reliability with constraints on volume, weight, and system cost in series, series–parallel, and complex bridge systems and (2) the optimum cost of two different types of complex systems with constraints imposed on system reliability. The obtained results are compared with classical GWO and some other optimization algorithms that are used to solve reliability problems in the literature. The comparison shows that the RW-GWO is comparatively an efficient algorithm to solve the reliability engineering problems.


Gray wolf optimizer Swarm intelligence Constraint handling System reliability 


  1. 1.
    Yang, X.-S.: Nature-inspired optimization algorithms. Elsevier (2014)Google Scholar
  2. 2.
    Wolpert, D.H., Macready, W.G., et al.: No free lunch theorems for search. Technical Report, Technical Report SFI-TR-95–02-010, Santa Fe Institute (1995)Google Scholar
  3. 3.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, MHS’95, pp. 39–43. IEEE (1995)Google Scholar
  4. 4.
    Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)CrossRefGoogle Scholar
  5. 5.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J. Global Optim. 39(3), 459–471 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)CrossRefGoogle Scholar
  7. 7.
    Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRefGoogle Scholar
  8. 8.
    Črepinšek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 35 (2013)CrossRefGoogle Scholar
  9. 9.
    Gupta, S., Deep, K.: A novel random walk grey wolf optimizer. Swarm Evol. Comput. (2018a)Google Scholar
  10. 10.
    Gupta, S., Deep, K.: Random walk grey wolf optimizer for constrained engineering optimization problems. Comput. Intell. (2018b)Google Scholar
  11. 11.
    Kumar, A., Singh, S.: Reliability analysis of an n-unit parallel standby system under imperfect switching using copula. Comput. Model. New Technol. 12(1), 47–55 (2008)MathSciNetGoogle Scholar
  12. 12.
    Coit, D.W., Smith, A.E.: Reliability optimization of series-parallel systems using a genetic algorithm. IEEE Trans. Reliab. 45(2), 254–260 (1996)CrossRefGoogle Scholar
  13. 13.
    Ravi, V., Murty, B., Reddy, J.: Nonequilibrium simulated-annealing algorithm applied to reliability optimization of complex systems. IEEE Trans. Reliab. 46(2), 233–239 (1997)CrossRefGoogle Scholar
  14. 14.
    Ravi, V., Reddy, P., Zimmermann, H.-J.: Fuzzy global optimization of complex system reliability. IEEE Trans. Fuzzy Syst. 8(3), 241–248 (2000)CrossRefGoogle Scholar
  15. 15.
    Shelokar, P.S., Jayaraman, V., Kulkarni, B.: Ant algorithm for single and multiobjective reliability optimization problems. Qual. Reliab. Eng. Int. 18(6), 497–514 (2002)CrossRefGoogle Scholar
  16. 16.
    Deep, K., Deepti: Reliability optimization of complex systems through C-SOMGA. J. Inf. Comput. Sci. 4(3), 163–172 (2009)Google Scholar
  17. 17.
    Mutingi, M., Kommula, V.P.: Reliability optimization for the complex bridge system: fuzzy multi-criteria genetic algorithm. In: Proceedings of Fifth International Conference on Soft Computing for Problem Solving, pp. 651–663. SpringerGoogle Scholar
  18. 18.
    Kuo, W., Prasad, V.R.: An annotated overview of system-reliability optimization. IEEE Trans. Reliab. 49(2), 176–187 (2000)CrossRefGoogle Scholar
  19. 19.
    Levitin, G., Lisnianski, A.: A new approach to solving problems of multi-state system reliability optimization. Qual. Reliab. Eng. Int. 17(2), 93–104 (2001)CrossRefGoogle Scholar
  20. 20.
    Kumar, A., Pant, S., Ram, M.: System reliability optimization using gray wolf optimizer algorithm. Qual. Reliab. Eng. Int. 33(7), 1327–1335 (2017)CrossRefGoogle Scholar
  21. 21.
    Majety, S.R.V., Dawande, M., Rajgopal, J.: Optimal reliability allocation with discrete cost-reliability data for components. Oper. Res. 47(6), 899–906 (1999)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mohan, C., Shanker, K.: Reliability optimization of complex systems using random search technique. Microelectron. Reliab. 28(4), 513–518 (1988)CrossRefGoogle Scholar
  23. 23.
    Hikita, M., Nakagawa, Y., Nakashima, K., Yamato, K.: Application of the surrogate constraints algorithm to optimal reliability design of systems. Microelectron. Reliab. 26(1), 35–38 (1986)CrossRefGoogle Scholar
  24. 24.
    Yalaoui, A., Châtelet, E., Chu, C.: A new dynamic programming method for reliability & redundancy allocation in a parallel-series system. IEEE Trans. Reliab. 54(2), 254–261 (2005)CrossRefGoogle Scholar
  25. 25.
    Liang, Y.-C., Chen, Y.-C.: Redundancy allocation of series-parallel systems using a variable neighborhood search algorithm. Reliab. Eng. Syst. Safety 92(3), 323–331 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kulturel-Konak, S., Smith, A.E., Coit, D.W.: Efficiently solving the redundancy allocation problem using tabu search. IIE Trans. 35(6), 515–526 (2003)CrossRefGoogle Scholar
  27. 27.
    Kuo, W., Hwang, C.-L., Tillman, F.A.: A note on heuristic methods in optimal system reliability. IEEE Trans. Reliab. 27(5), 320–324 (1978)CrossRefGoogle Scholar
  28. 28.
    Hikita, M., Nakagawa, Y., Nakashima, K., Narihisa, H.: Reliability optimization of systems by a surrogate-constraints algorithm. IEEE Trans. Reliab. 41(3), 473–480 (1992)CrossRefGoogle Scholar
  29. 29.
    Gopal, K., Aggarwal, K., Gupta, J.: An improved algorithm for reliability optimization. IEEE Trans. Reliab. 27(5), 325–328 (1978)CrossRefGoogle Scholar
  30. 30.
    Aggarwal, K., Gupta, J., Misra, K.: A new heuristic criterion for solving a redundancy optimization problem. IEEE Trans. Reliab. 24(1), 86–87 (1975)CrossRefGoogle Scholar
  31. 31.
    Xu, Z., Kuo, W., Lin, H.-H.: Optimization limits in improving system reliability. IEEE Trans. Reliab. 39(1), 51–60 (1990)CrossRefGoogle Scholar
  32. 32.
    Hsieh, Y.-C., Chen, T.-C., Bricker, D.L.: Genetic algorithms for reliability design problems. Microelectron. Reliab. 38(10), 1599–1605 (1998)CrossRefGoogle Scholar
  33. 33.
    Yokota, T., Gen, M., Li, Y.-X.: Genetic algorithm for non-linear mixed integer programming problems and its applications. Comput. Ind. Eng. 30(4), 905–917 (1996)CrossRefGoogle Scholar
  34. 34.
    Chen, T.-C.: Ias based approach for reliability redundancy allocation problems. Appl. Math. Comput. 182(2), 1556–1567 (2006)zbMATHGoogle Scholar
  35. 35.
    Kim, H.-G., Bae, C.-O., Park, D.-J.: Reliability-redundancy optimization using simulated annealing algorithms. J. Qual. Maintenance Eng. 12(4), 354–363 (2006)CrossRefGoogle Scholar
  36. 36.
    Yeh, W.-C., Hsieh, T.-J.: Solving reliability redundancy allocation problems using an artificial bee colony algorithm. Comput. Oper. Res. 38(11), 1465–1473 (2011)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Wu, P., Gao, L., Zou, D., Li, S.: An improved particle swarm optimization algorithm for reliability problems. ISA Trans. 50(1), 71–81 (2011)CrossRefGoogle Scholar
  38. 38.
    Dhingra, A.K.: Optimal apportionment of reliability and redundancy in series systems under multiple objectives. IEEE Trans. Reliab. 41(4), 576–582 (1992)CrossRefGoogle Scholar
  39. 39.
    Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)CrossRefGoogle Scholar
  40. 40.
    Tillman, F., Hwang, C., Kuo, W.: Optimization of system reliability. Marecel Dekker (1980)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of Computer Science and EngineeringIslamic University of Science & TechnologyAwantiporaIndia

Personalised recommendations